CARDIOVASCULAR DISEASE IT'S NOT JUST A PLUMBING PROBLEM!

Brenda Sanzobrino, MD, FACC

Fractional Flow Reserve vs Angiography for Multivessel Evaluation

FFR – Pressure Wire

- Measures coronary artery flow before and after the stenosis
- Performed at time of angiography
- Uses a coronary pressure wire
- Identifies ischemic-producing coronary artery stenoses

Why?

Why is it important to know if the stenosis produces ischemia in the distal myocardium?

FACTS: WHAT DO WE KNOW

- Eliminating ischemia improves patient outcomes in the setting of:
 - Acute Myocardial Infarction
 - Acute Coronary Syndromes
 - Non-ST segment elevation myocardial infarctions

FACTS: WHAT DON'T WE KNOW

Are all moderate to highgrade stenoses seen on coronary angiogram associated with ischemia?

FACTS: <u>WHAT DON'T WE KNOW?</u> When is there a question of whether ischemia is present?

- No prior nuclear imaging stress test
- False positive nuclear imaging stress test
- Elective cardiac catheterization for pre-op clearance
- Atypically positive troponins

What Do the New 2009 ACC/AHA/SCAI/STS/AATS/ASNC Guidelines Recommend?

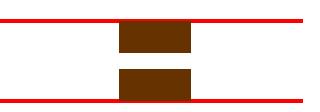
- "Recently published guidelines have underscored the importance of demonstration of ischemia when deciding between medical therapy and percutaneous revascularization"
- Patel MR et al. Circulation 2009; 119: 1330-1352
 - Appropriateness Criteria for Coronary Revascularization

Coronary Angiography Remains the Gold Standard for:

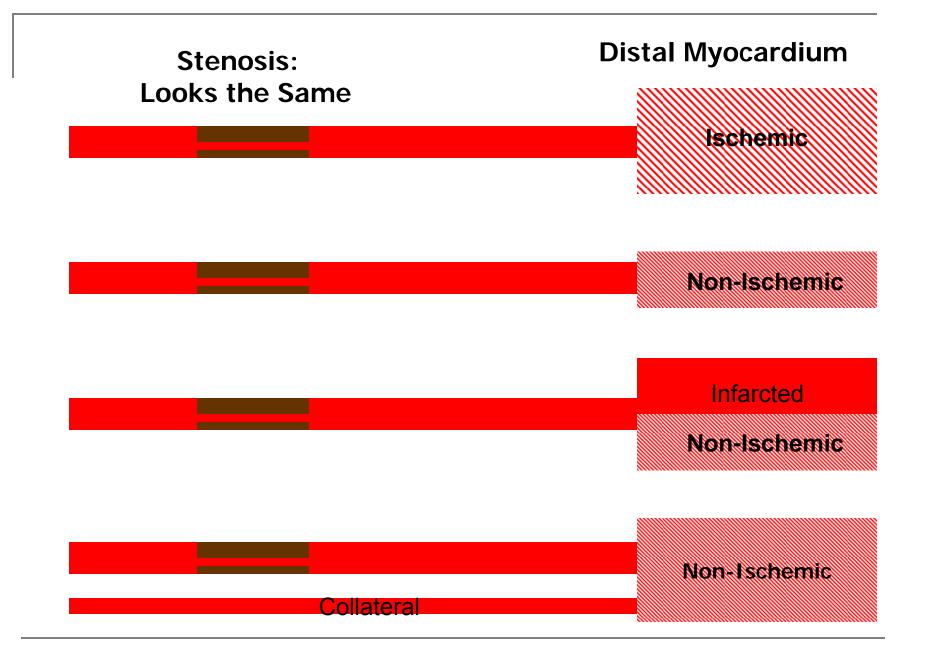
- Diagnosing critical coronary artery disease
- Guiding decisions about percutaneous coronary interventions

What are the Limitations of Coronary Angiography?

- It is 2-dimensional this can result in both underestimation and overestimation of coronary stenosis
- Angiography does not take into account
 - The amount of myocardium at risk distally
 - The presence of collateral circulation


- In multivessel disease it may be difficult to accurately identify which stenosis is responsible for the ischemia and should be treated
- Provides morphological information only No physiological information from the myocardial cells distally is provided

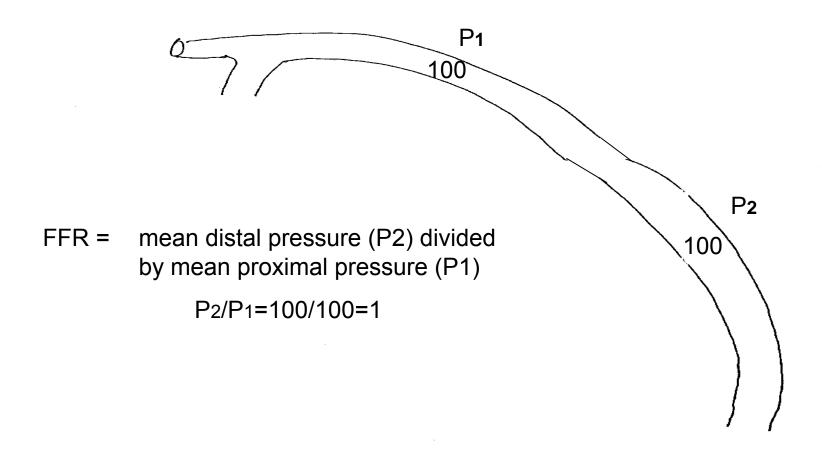
How can some stenoses look highgrade and not be associated with ischemia?

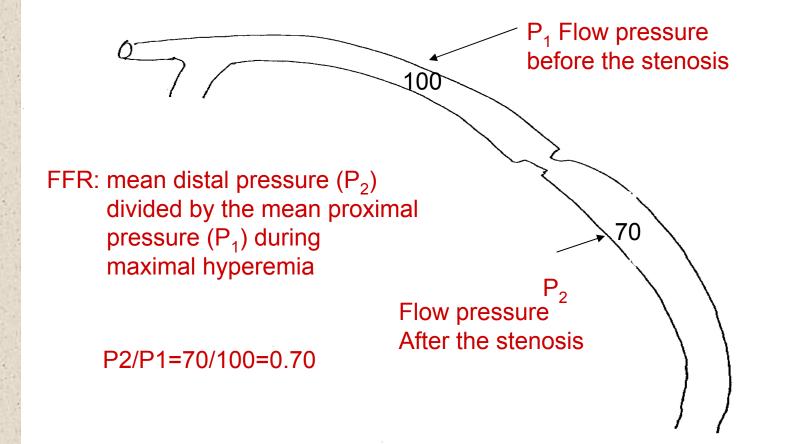

All Stenoses Are Not Equal

Same diameter stenosis

- Different distal myocardium by
 - Size
 - Prior myocardial infarction
 - Collateral blood flow

FAME: FFR vs Angiography


 Study: Prospective randomized comparison of <u>FFR-guided strategy</u> to an <u>angiographic-</u> <u>guided strategy</u> in patients with multivessel coronary artery disease undergoing PCI


FAME: FFR vs Angiography Questions:

- Is angiographic assessment only adequate in assessing requirements for PCI?
- Does FFR measurement have a role in assessing requirements for PCI?
- Could invasive physiologic guidance (FFR) improve decision making for stent implantation and affect outcomes?

FFR: No Stenosis

Fractional Flow Reserve

Fractional Flow Reserve = FFR

Normal FFR = 0.94 - 1.0P₂/P₁

Abnormal FFR = < 0.75 - 0.80

 P_2/P_1

Interpretation of Results Normal FFR: $P_2/P_1 = 0.94 - 1.0$

- Normal blood flow to distal myocardium
- Stenosis <u>does not</u> compromise flow to the distal myocardium
- Significant ischemia has been Ruled Out
- Correlates with no evidence of ischemia on non-invasive imaging studies

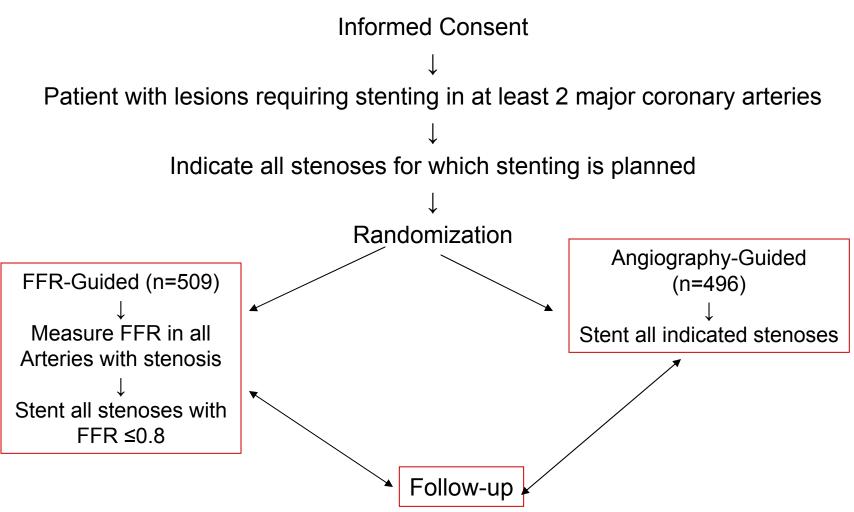
Interpretation of Results

<u>Abnormal FFR</u>: $P_2/P_1 = < 0.75 - 0.8$

- Abnormal inadequate blood flow to distal myocardium
- Stenosis <u>does</u> compromise flow to the distal myocardium
- Significant ischemic has been Ruled In
- Correlates with Ischemia on non-invasive imaging studies

To compare the efficacy of 2 strategies

- Angiographic guidance
- Physiologic guidance/FFR
- for deciding which coronary lesion to stent in patients with mutivessel CAD



Trial Design

- Coronary Angiogram
 - □ Stenoses identified in \ge 2 major coronary arteries
 - Investigator/Cath Physician recommends DES stents
- Randomization
 - Angiographic guidance arm \rightarrow Stenting/PCI
 - FFR Guidance arm \rightarrow FFR measure in each vessel
 - Only undergo stent if FFR < 0.8</p>
 - Central line of IV Adenosine 140 mcg/kg/min for maximum hyperemia

FAME STUDY SCHEMA

Trial Design

- Primary End Point (at one year)
 - Death
 - Myocardial Infarction
 - Repeat coronary revascularization
- Secondary Ends Points
 - Individual Adverse Events
 - Cost Effectiveness
 - Quality of Life
 - Mace
 - Functional Class
 - # Anti-Anginal Medications
 - Procedural Time
 - Contrast Used

FFR Measurements	Angio group (N=496)	FFR group (N=509)	P-value
FFR <0.80	n/a	63%	
>0.80	n/a	37%	

Primary End Points at 1 year

End points	Angio-group	FFR group	P-value
Events at 1 year	N=509	N=509	
Composite death, MI, repeat vascularization	N=91 18.3%	N=67 13.2%	0.02
Death	N=15 3%	N=9 1.3%	0.19
Myocardial Infarction	N=43 8.7%	N=29 5.7%	0.07
Repeat vascularization	N=47 9.5%	N=33 6.5%	0.08
Death or MI	N=55 11.1%	N=37 7.3%	0.04

Functional Status at 1 year

Functional Status	Angio-group	FFR group	P-value
at 1 year	N=509	N=509	
No Events/Angina Free	326/482	360/493	0.07
#/total #	67.6%	73%	
Angina Free	374/480	399/491	0.20
#/total #	77.9%	81.3%	
Anti-Anginal Meds # meds taking BB, CCB, Nitrates	1.23 +/- 0.74	1.20 +/- 0.76	0.48
Quality of Ilfe Scale 0 – 100 0=low 100=high (quality)	73.7	74.5	0.65

	Angio group (N=496)	FFR group (N=509)	P-value
Procedure Time (min)	70	71	
Volume of contrast (MI)	302	272	<0.001
DES #/pt	2.7	1.9	<0.001
Cost	\$6007	\$5332	<0.001
Hospital stay (days)	3.7	3.4	0.05

FFR Strategy

- Reduced the number of stents used
- Decreased amount of contrast used
- Did not prolong the procedure
- Reduced cost
- Resulted in a similar if not improved functional status

Summary

In patients with ACS or SAP and multi-vessel disease

Routine measurement of FFR prior to PCI

Compared with

Standard strategy of PCI guided by angiography

At one year, significantly reduced the rate of primary end points of:

Death

➤Myocardial Infarction

Repeat Vascularization

My Summary

 It has been known for decades that the most important prognostic factor among patients with CAD is the presence and extent of inducible ischemia.¹

 2009 Guidelines underscore the importance of demonstrating ischemia when deciding on therapy modality with percutaneous revasculaization.²

^{1.} Beller, G.A. etal Circ 2000

Take Home Message

- Revascularize the ischemic lesions (PTCA/Stent)
- Medical therapy for the non-ischemic lesions
- Optimal medical therapy for all patients with CAD

