Oxygen Transport and Consumption CVI Symposium August 26, 2011

Edna Trepanier, MSN, MBA, BSCHEM, RN, CCRN Associate Professor, University of Phoenix & Broward College Nurse Manager, 6C - Memorial Regional Hospital

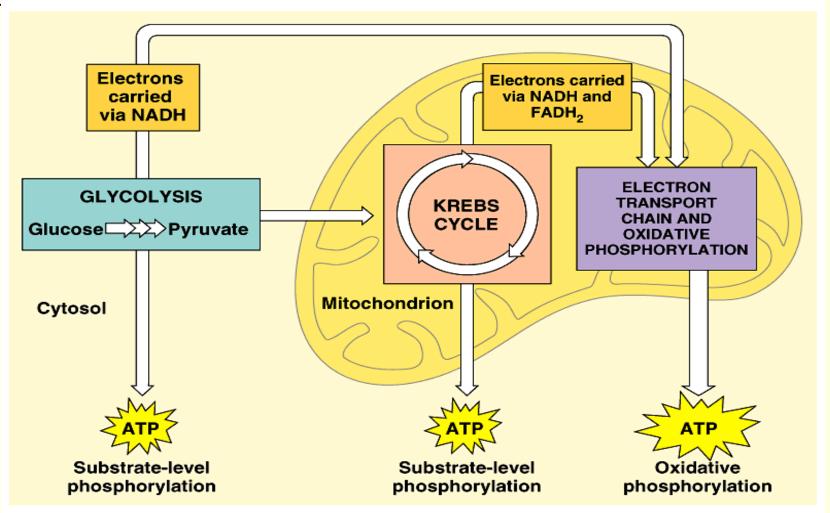
CE Activity / Speaker Information & Disclosures

CE Information:

Nursing continuing education for this activity is provided by Memorial Regional Hospital – approved by the Florida Board of Nursing to provide education for nurses. This activity has been approved for 1 hour / 1 CE.

Speaker Information:

Edna Trepanier, MSN, MBA, BSCHEM, RN, CCRN is a full-time nurse manager of a 41-bed post intervention unit of a trauma level 1 hospital in Hollywood, FL. She is an Associate Professor at the University of Phoenix, Ft. Lauderdale campus and Broward College, Central Campus at Davy, FL. Ms. Trepanier had published two Chemistry manuals in the Philippines and was a coauthor of an educational article on Diabetic Feet published with Nursing Spectrum in 2010. She lectures extensively both locally and nationally on numerous nursing topics.


Disclosures:

The planners of this educational activity have reported no conflicts of interest to disclose. The speaker, Ms. Trepanier, reports that she has no conflicts of interest to disclose with respect to this educational activity.

Objectives

- Describe the gas exchange from the lungs and into the cells
- Explain the relationship of the oxyhemoglobin dissociation curve to tissue oxygenation
- Explain the process of oxygen delivery and oxygen consumption at the tissue level

Why Oxygen is so important...

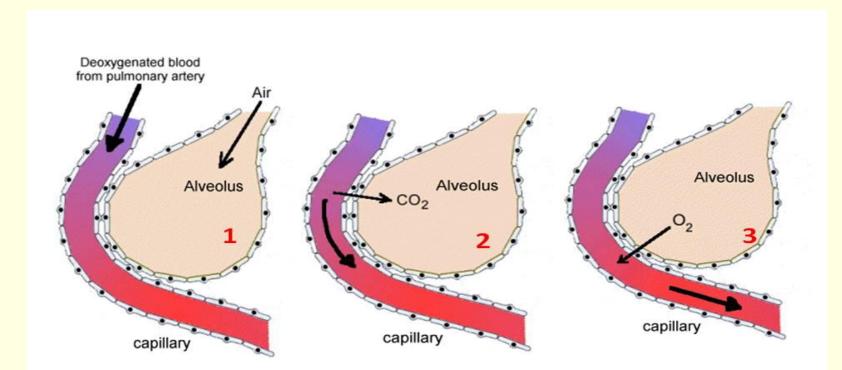
Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Oxygenation and Transport

Concepts

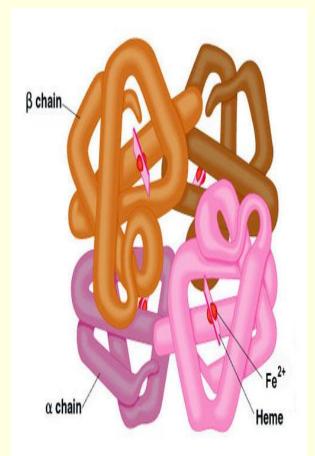
- Oxygen supply
- Oxygen demand
 - The amount of oxygen the cells require to meet their metabolic process
- Oxygen consumption
 - The amount of oxygen the cells actually use

(Alspach, 2010)


Oxygen Supply and Demand

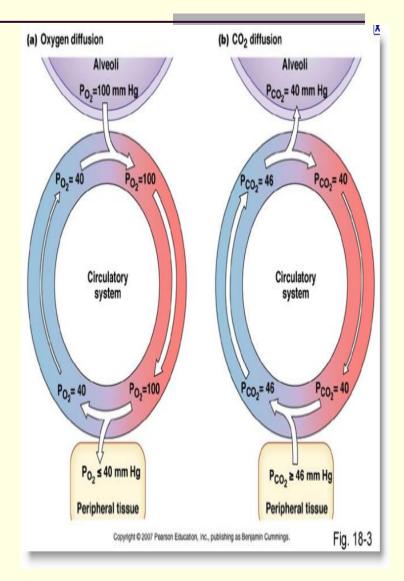
Determinants of oxygen supply

- Diffused oxygen
- Blood oxygen content
- Oxygen transport
- Oxygen extraction


(Alspach, 2010)

Alveolar Gas Exchange (Diffusion)

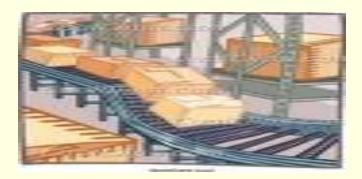
Diffused Oxygen (Alspach, 2010)


- 97%-98% of diffused O₂ combines with Hgb to form Oxyhemoglobin Oxygen saturation (SaO₂)
 - SaO₂ = on ABG
 - SpO₂ = on pulse oxymetry
- 1 Hgb = max of 4 oxygen
 - Hgb represents the O₂
 - Carrying capacity

Diffused Oxygen

- 2%-3% of total O₂ dissolved in plasma Partial pressure of O₂ (PaO_{2}) Pressure gradient Driving pressure to move oxygen from: High to low pressure in lungs
 - Capillary membrane into the cells

(Lough 2010 Pulmonary CCRN)

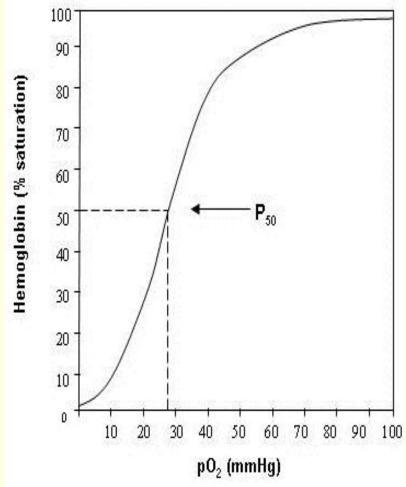


How PaO₂ and SaO₂ Work Together

PaO₂ is the "loading dock"

SaO₂ is the "conveyor belt" or "transport"

Which one unloads O₂ into cells?


Oxyhemoglobin Curve

SaO₂ is shown on Vertical Axis

97% of oxygen is bound to hemoglobin

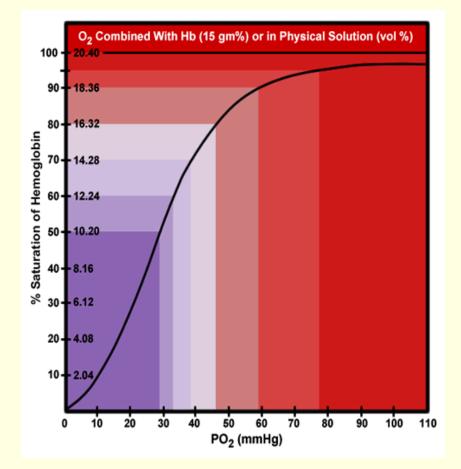
PaO₂ is shown on Horizontal Axis

3% of oxygen
 dissolved in plasma

(Lough, 2010, Pulmonary CCRN)

Oxyhemoglobin Curve

■ 30 – 60 – 90 Rule

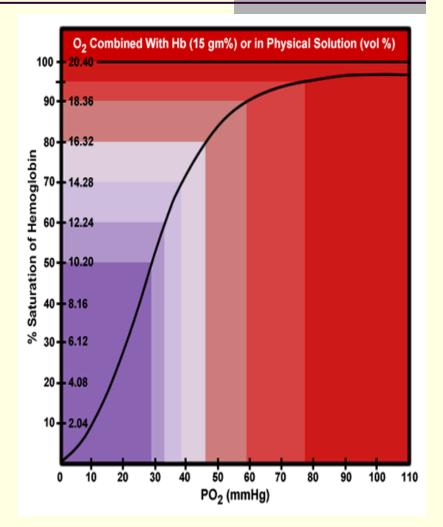

When PO₂ is 30 mm Hg - SaO₂ is 60%
 Usually when PvO₂ 30 - SvO₂ is 60%
 When PO₂ is 60 mm Hg - SO₂ is 90%
 Usually when PaO₂ 60 - SaO₂ (SpO₂) is 90%

(Lough, 2010, Pulmonary CCRN)

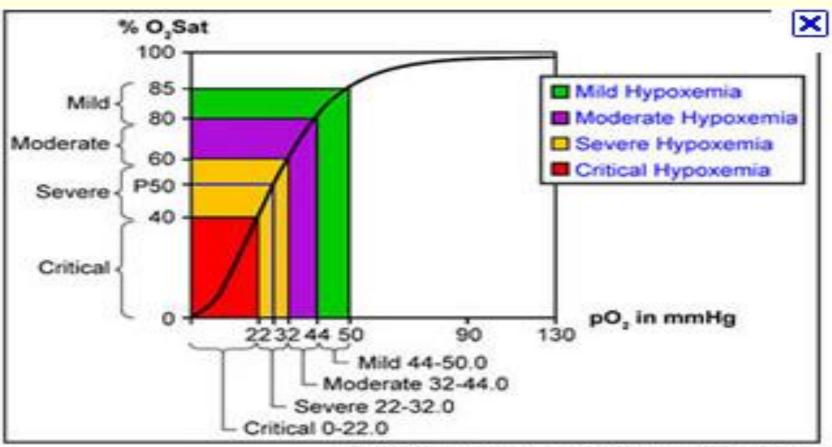
Oxyhemoglobin Curve: Arterial

- Arterial Association
 - Flat top part of the curve is arterial
 - Approximately SPO₂ is 90% and PaO₂ is at 60 mmHg
- Allows O_2 to saturate Hgb adequately as long as PaO_2 is above 60 mmHg Important in high altitude and in old age

(Urden, Stacy, & Lough, 2006)

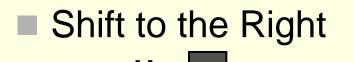


Oxyhemoglobin Curve - Venous


- Venous blood
 - Descending limb of the curve is venous (remaining 2/3 of the curve)
- SvO₂ is 60-80%
- PvO₂ 30-40 mm Hg
- O₂ dissociation
- Purpose: body

 can unload large
 quantities of O₂
 to tissues with
 small decreases in O₂

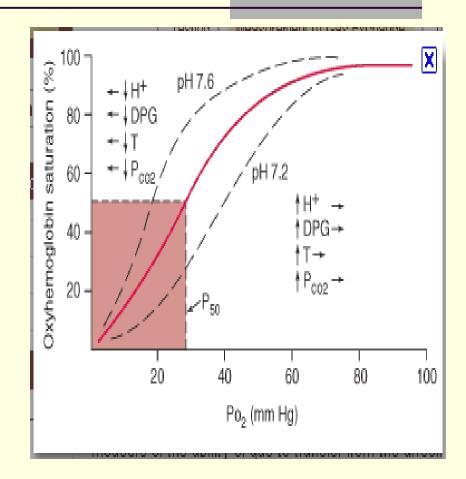
 (Urden, Stacy, & Lough, 2006)


Oxyhemoglobin Dissociation Curve

Derived from: www.ventworld.com/resources/cxydisso/oxydisso.html

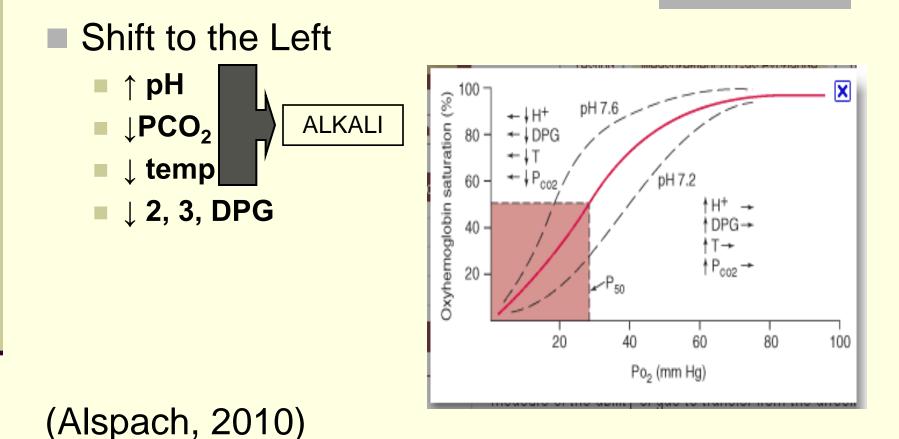
Oxyhemoglobin Curve

ACID


↓ pH
 ↑PCO₂
 ↑ temp

■ ↑ 2, 3, DPG

2,3,DPG


(Diphosphoglycerate) is a metabolite of glucose in the RBC that helps oxygen dissociate from hemoglobin at the tissue level

(Lough, 2010, Pulmonary CCRN)

Also known as the "Bohr Effect"

Oxyhemoglobin Curve

Blood Oxygen Content (CaO₂)

CaO₂ or arterial oxygen content

- Sum of the oxyhemoglobin & dissolved O₂ in the arterial blood
- Factors affecting CaO₂
 - Hemoglobin
 - SaO₂
 - SaO₂

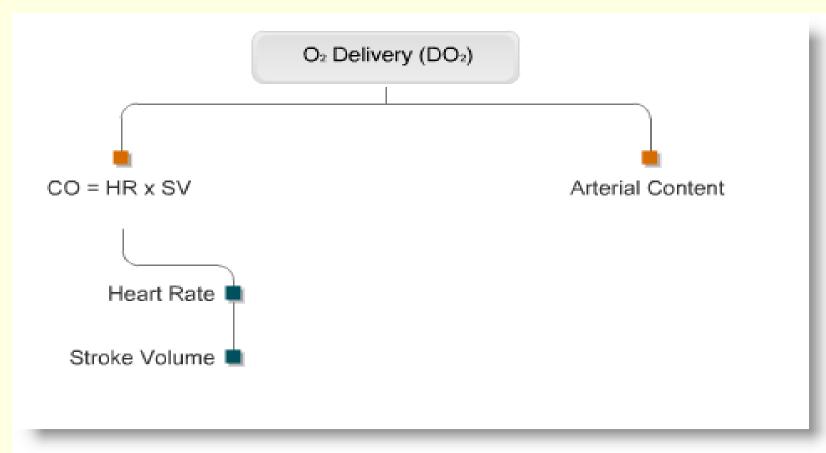
(Klumer, 2011)

Oxygen Transport

Cardiac output is important determinant
 HR X Stroke Volume

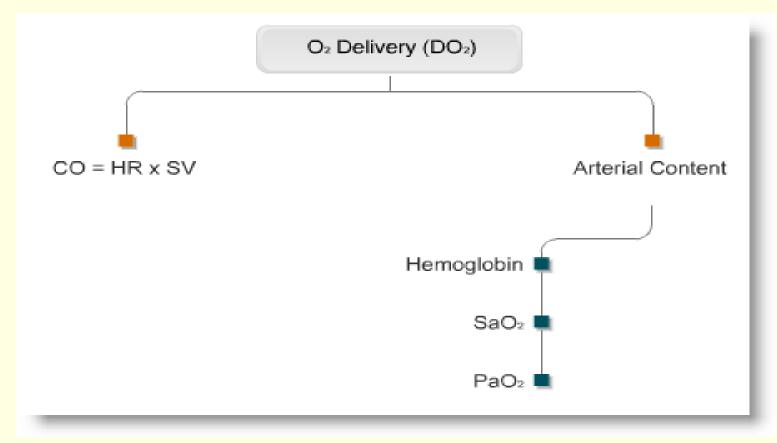
Stroke Volume

- Preload
- Afterload
- Contractility


(Klumer, 2011)

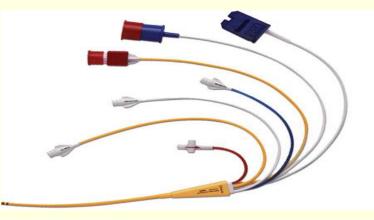
Oxygen Extraction

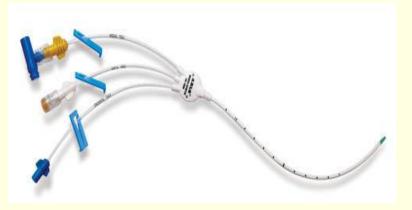
- Oxygen reaching tissues
 Dissolved O₂ diffuse into cells
- Conditions that impair oxygen diffusion
 Severe sepsis
 - Carbon monoxide poisoning
 - (Klumer, 2011)


Oxygen Delivery (DO₂) (Alspach, 2010)

Left : CO Right: Arterial Oxygen Content

Oxygen Delivery (DO₂) (Alspach, 2010)

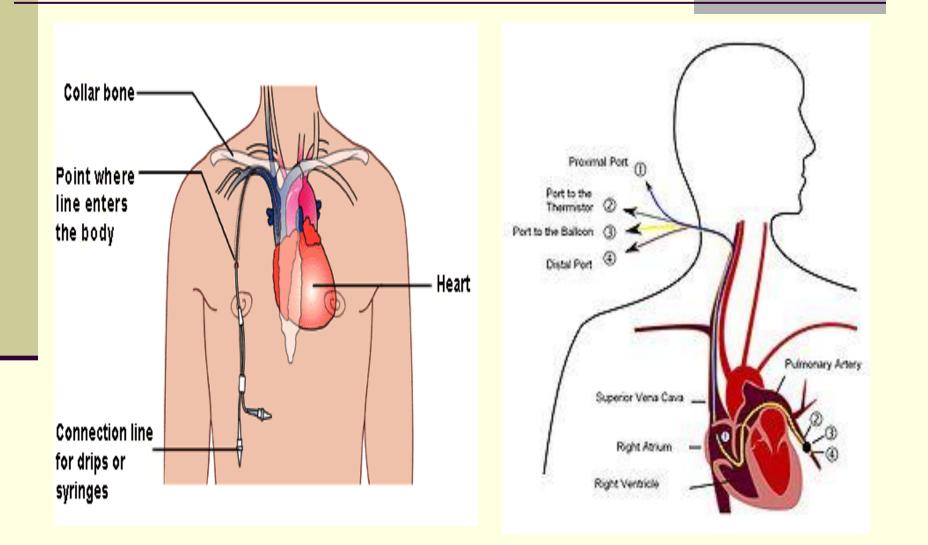

Left : CO **Right: Arterial Oxygen Content**


Types of Catheters to Measure Oxygen Saturation of Blood (AI

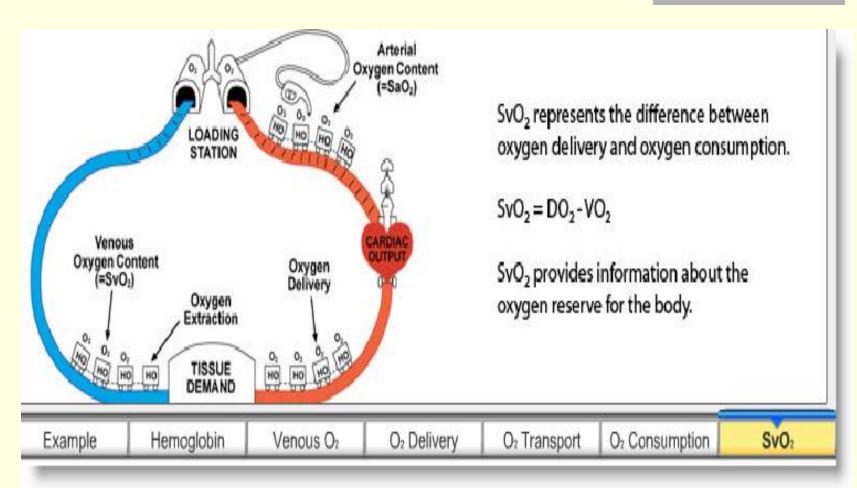
(Alspach, 2010)

Continuous
 Mixed Venous Oxygen
 Saturation Monitoring
 (SvO₂)

Continuous
 Central Venous Oxygen
 Saturation Monitoring
 (ScvO₂)



Central Venous ScVO₂ Saturation Continuous SvO₂ Monitoring (Alspach, 2010)


- Central Venous ScVO₂ catheter
 - Measured in superior vena cava from beroptic CVP cath
 - Normal ScVO₂ is 65-85% (average 80%)
- Pulmonary Artery SvO₂ Catheter
 - Measured from distal lumen of fiberoptic PA catheter
 - Also called "Mixed Venous Blood Gas"
 - Normal SvO₂ is 60-80% (average 75%)
- Why is there a difference in these 2 values?

ScvO₂ versus SvO₂

(Alspach, 2010)

$SVO_2 = Difference Between O_2$ delivery & O_2 Consumption (VO₂)

Causes of Decreased SvO₂ (Alspach, 2010)

A decreased SvO₂ value indicates more oxygen is being extracted.

Causes of decreased SvO₂:

Decreased delivery

- Falling hemoglobin
- Falling cardiac output
- Falling SaO₂

Increased demand

- Seizures, shivering
- Pain
- Increased activity
- Hyperthermia

(CCRN Pulmonary)

Causes of Increased SvO₂

An increase in the SvO₂ value indicates that less oxygen is being extracted.

Regardless of the change in the SvO_2 value, you must assess the patient in an effort to determine why the SvO_2 value is changing.

Causes of increased SvO₂:

Increased delivery

- Increased CO
- Administration of blood products
- Increased FiO₂

Decreased demand

- Hypothermia
- Relief of pain
- Anesthesia

Sepsis:

- Demand increased
- Oxygen extraction inhibited
- Wedging a pulmonary artery catheter
 - SvO₂ will increase by 10-20%
 - Mixed venous blood no longer flowing by the catheter. The light source is now reflected off arterialized blood. When the balloon is deflated, the SvO₂ value will return to previous setting.

(CCRN Pulmonary)

Cardiac Factors that Affect SVO₂ Values

Stroke Volume x HR = Cardiac Output

Preload Afterload Afterload

Cardiopulmonary Factors that affect SVO₂

Ventilation

- Inspired O₂, work of breathing, SaO₂ (SpO₂)
- Hemoglobin
 - Sufficient RBCs for transport
- Cardiac Output
 - Adequate flow and perfusion

Metabolic/Tissue Factors that Affect SVO₂

- Muscle / Tissue / Organ Activity
 - ↑ O₂ consumption (tissues use more oxygen)
 - Septic patient
 - ↓ O₂ consumption (tissues use less oxygen)
 - Cold anesthetic patient

CCRN Questions

CCRN Question

- A 76 y.o. female is admitted to ER with exposure and hypothermia. Her temp. is 35.4°C, pH 7.53, & PaCO₂ 42 mm Hg. The oxyhemoglobin dissociation curve shows:
- A. Shift to the left, $\uparrow O_2$ tissue delivery
- B. Shift to the right,
- Shift to the right,
- Shift ot the left,

- $\uparrow O_2$ tissue delivery
- $\downarrow O_2$ tissue delivery
- $\downarrow O_2$ tissue delivery

CCRN Question

- A 56 y.o. male admitted to ICU with acute respiratory failure + sepsis. Temp 39.2°C, pH 7.24, PaO₂ 58 and PaCO₂ 55 mmHg. The oxyhemoglobin dissociation curve shows:
 - A. Shift to the left, $\uparrow O_2$ tissue delivery
 - B. Shift to the right, $\uparrow O_2$ tissue delivery
 - C. Shift to the right, $\downarrow O_2$ tissue delivery
 - **D**. Shift to the left, $\downarrow O_2$ tissue delivery

CCRN Question

- Susan has an SvO₂ catheter in place and the reading shows 40% for over 10 minutes. The critical care nurse should?
 - A. Check PaCO₂, CO and Hemoglobin
 B. Do nothing this is a normal venous value
 C. Check the catheter, SpO₂, CO and VO₂
 D. Check CO, Hemoglobin and an ABG

References

Alspach, J. (Ed.) (2010). *AACN certification and core review for high acuity and critical care* (6th ed.).

- Lough, M. (2010). *CCRN review*. CA: Stanford Hospital and Clinics Center for Education.
- Klumer, W. (2011). Hemodynamic monitoring made incredibly easy. PA: Lippincot Wiiliams & Wilkins.

Urden, L., Stacy, K., & Lough, M. (2006). *Thelan's critical care nursing*. St. Louis, MO: Mosby.

