CVI SYMPOSIUM 2012

Old and New STENT Technology for CAD

Luis F. Tami, MD Cardiac Cath Lab Director Memorial Regional Hospital

We began about 35 Years ago! **Andreas Gruentzig**

1939 - 1985

AHA Meeting, Nov 1976, Miami, Florida

About Andreas Gruntzig's presentation at the AHA 1977

".....it was standing room only and after the presentation, the audience stood and applauded, almost unheard of at a scientific meeting."

First live demonstration in Zurich in 1978

Gruntzig pioneered live demonstrations as a way to learn and master procedures.

..... And even today

Live Demonstration, Miami, Oct 2012

11,800 attendees from 52 countries. 46.5 hrs of life cases

PCI: Incremental Improvements

First Report of Coronary Stenting in 1987

INTRAVASCULAR STENTS TO PREVENT OCCLUSION AND RESTENOSIS AFTER TRANSLUMINAL ANGIOPLASTY

Ulrich Sigwart, M.D., Jacques Puel, M.D., Velimir Mirkovitch, M.D., Francis Joffre, M.D., and Lukas Kappenberger, M.D.

N Engl J Med 1987; 316:701-6

Ulrich Sigwarth (Lausanne, Switzerland 1986) First human coronary implantation Stents initially rejected due to stent thrombosis and bleeding due to anticoagulation

Coronary stents — implantation of foreign bodies into stenotic human coronary arteries: dream or nightmare?

Why to Stent?

 Mechanically scaffold the artery and create a larger lumen predictably

Prevent / treat abrupt vessel closure

Reduce restenosis

Basic strut types / Construction

1. Laser-cut stents start as a tube, a laser removes material and a stent remains. Laser-cut stent production leaves square (blunt) edges.

Squared edges

2. Metallic rings are formed into sinusoidal elements that are fused together to comprise a modular stent.

Ultrathin, smooth, rounded struts

ALL OTHER STENTS

12 57 BES

Driver, Endeavor

Continuous Helical Technology for stent strut construction

Continuous Helical Technology	0.0038"	
2992	↓ 0.0034" ↓	
222 -	0.0030" 	
566	• 0.0025" 	
	0.0020"	

• Enhance deliverability and conformability without compromising strength & opacity

Integrity, Resolute

AS A RESULTS OF STENTS...

Interventional Cardiologist sleep better at night

The Limitation of Bare Metal Stents: RESTENOSIS

LATE LOSS = Intimal Hyperplasia

SOLUTION: Drug-Eluting Stents First Generation

CYPHER Stent: First patient 10 Years

Success over In-Stent Restenosis!!

The Sirolimus-Eluting Stent (Cypher)

FDA Approval in US: APRIL 2003

Bx VELOCITYTMStent - Stainless steel stent Drug carrier: - Blend of 2 polymers (PEVA + PBMA) Sirolimus (~ 10um thick)

One Year later: TAXUS Stent

Drug

Paclitaxel

- Binds tubulin
- Stabilizes microtubular deconstruction
- Multi-cellular
- Multi-functional
- Cytostatic at low dose

Polymer

Translute[™]

- Polyolefin derivative
- Uniform
- Biocompatible
- Elastomeric
- Provides controlled release

Stent

Express²

- Stainless Steel
- Maverick balloon system
- Flexible
- Deliverable

1st Generation DES.... the good, the bad, and the ugly!

Late SES Stent Thrombosis

Need for prolonged DAPT

Baseline

After 2 Cypher St Late Stent Thrombosis at 3.5 yrs

STENT FRACTURE

59 yr old LIMA to LAD. Graft failed and native LAD stent done in 1997 (initial) Native LAD stented with 2 Cyphers (1,2)

Subsequent restenosis

- 1. Cypher 3.5 x 33
- 2. Cypher 3.5 x 13
- 3. Cypher 3.5 x 8

ABNORMAL VASOMOTION DUE TO ENDOTHELIAL DYSFUNCTION

American Medical Journal 3 (2): 75-81, 2012 ISSN 1949-0070 © 2012 Science Publications

Coronary Endothelial Dysfunction after Drug-Eluting Stent Implantation

Shigenori Ito Division of Cardiovascular Medicine, Nagoya City East Medical Center 1-2-23 Wakamizu, Chikusa-Ku, Nagoya-Shi, Aichi-Ken, 464-857, Japan

STATE-OF-THE-ART PAPER

The First-Generation Drug-Eluting Stents and Coronary Endothelial Dysfunction

Lakshmana K. Pendyala, MD,* Xinhua Yin, MD, PHD,† Jinsheng Li, MD, PHD,† Jack P. Chen, MD,† Nicolas Chronos, MD,† Dongming Hou, MD, PHD† Louisville, Kentucky; and Atlanta, Georgia

PES 2.75 * 30 mm TAXUS 6 month follow-up, Baseline A. BMS 3.5 * 18 mm A3 A1 6 month follow-up, Baseline

DES RESTENOSIS

America's Largest Private Companies Howard Stern–Is Anyone Listening? SCORE! Hockey Is Hot Again

NOVEMBER 27, 2006 WWW.FORBES.COM

STENTS DEFIBRILLATORS SPINAL DISCS ARTIFICIAL KNEES

Are These As Safe As

DES = "a million ticking time bombs"

You Thin Risk of DES thrombosis even years after implantation

7, 2006

Stent Thrombosis

In-stent Neoatherosclerosis

Thin Cap Fibroatheroma 5 yrs after a BMS Left (Magnified view): Macrophages infiltrating thin fibrous cap

In-stent Neoatherosclerosis

Foamy Macrophages with early necrotic core in a Cypher stent after 13 months

Neoatherosclerosis: Earlier in DES

Blood Vessels change overtime: IVUS images of stent malapposition

IVUS SUBSTUDY OF HORIZONS. Guo N et al. Circulation 2010;122:1077-1084

Current DES in the U.S. Second Generation stents

About <u>30 DES approved in Europe</u>. About 80% DES used are the above listed. About 20% of market share are "other stents".

Everolimus-Eluting Stents: New standard

Polymer: PBMA & PVDF-HFP (7µm thickness)

XIENCE V (CoCr-EES)

PROMUS Element (PtCr-EES)

PBMA=poly (n-butyl methacrylate) (primer layer); PVDF-HFP=poly (vinylidene fluoride-co-hexafluoropropylene) (drug matrix layer)

Stone GW et al. JACC 2011; 57:1700–8

Endeavor DES System

Driver Cobalt Alloy Stent

PC Carrier

Stent Delivery System

Drug: Zotarolimus

Resolute DES System

Integrity Cobalt Alloy Stent

Stent Delivery System

Drug Elution

Comparison to 180 days

Late Loss* (mm) at 8-9 months In-stent late loss

DES Strut and Polymer Thickness

3.0 mm diameter stents, 500x magnification

NOT ALL DRUG ELUTING STENTS ARE THE SAME !

STENT THROMBOSIS: Landmark analysis

Bern Rotterdam (n=12,339 pts)

Räber et al, Circulation 2012

RESOLUTE All Comers Randomized Trial

Very Late Stent Thrombosis (Definite/Probable) 1-3 Years

Patients at Risk			
Resolute ZES	1140	1108	1081
CI%	0.00	0.27	0.55
Xience- ES	1152	1107	1083
CI%	0.00	0.27	0.56
%DAPT Resolute ZES Xience EES	12mths 84.4 83.5	24mths 18.4 18.3	36mths 13.8 13.4

Late Stent Thrombosis is a phenomenon of first generation DES (Cypher and Taxus). Evidence suggest safety of second generation DES (Xience, Promus Element and Resolute)

In fact, Xience has gained approval in Europe for 3 months of DAPT

Reason: <u>More biocompatible durable polymers</u>: -Fluoropolymers (Xience and Promus) -Phosphorylcoline / BioLinx (Endeavor / Resolute)

Drug-Eluting Stents WHICH NEEDS TO GO AND WHICH NEEDS TO STAY?

Polymer (drug carrier) has to go !

Bioabsorbable Polymers: - Synergy

- BioMatrix
- Excella
- Inspiron
- EPC Combo
- Polymer-Free: Drug-filled stent
 - BioFreedom
 - Translumina
 - Vestasyn

Drug-Eluting Technology Evolution

<u>Current DES</u> Conformal Biostable Polymer <u>SYNERGY™ DES</u>

Abluminal Bioabsorbable Polymer

Drug elution controlled by diffusion Drug Filled Stent without polymer

Bioabsorvable Vascular Scaffolds (BVS)*: New Scientific Breakthrough

***Def.** Temporary vascular stent, termed "scaffold" due to its being based on a temporary bioresorbable platform.

Fully Bioresorbable Stents (Scaffolds)

Igaki-Tamai

BVS

REVA

PLA

PLA (everolimus coat)

Iodinated tyrosinepolycarbonate (with PTX)

PAE-salicylate (with sirolimus)

Magnesium

PLLA = Poly (L-lactide)

PLLA is used in numerous clinical items, such as resorbable sutures, soft tissue implants, orthopedic implants, and dialysis media.

Interconnected with amorphous chains

PLLA DEGRADATION PATHWAY

BVS Degradation

Mechanical integrity has disappeared by 12 months.

Restoration of vasomotion at 12 MONTHS

Ergonovine (n=13 patients)

Bioresorption is a real phenomenon

NON APPOSED Corrugated

Smooth

Baseline

6 months

2 years

Serruys et al. Lancet 2009

Scaffold healing results in plaque coverage: Can capping plaques prevent future Myocardial Infarctions? Progressive sealing and shielding of calcified plaque

Magnified images at BL, 6M and 2Y, using the radio-opaque markers as a landmark.

Not only the BVS can cap the plaque... late lumen enlargement is observed!!!

Bioabsorbable Vascular Scaffolds

Revascularization

- Provides transient mechanical support needed: 3-6 months
- Drug delivery that modulates healing

Vessel Restoration

- Normal vessel physiology is restored: Vasomotion, pulsatility and shear forces

Resortion

Gradual fading of stent without major inflammatory changes.
Lumen dimensions are preserved or enlarge. Smooth endothelial surface is restored.

Igaki-Tamai bioabsorbable stent Non-drug eluting

First BVS implanted in human in 2000 (50 pts)

Ormiston J A , Serruys P W Circ Cardiovasc Interv 2009;2:255-260

Igaki-Tamai PLLA stent 10 yr OCT images

Onuma Y, Serruys PW Circulation 2011;123:779-797

Everolimus eluting BVS (Abbott)

SEM Gen 1.0 Cohort A clinical trial (2yr FU)

SEM Gen 1.1 Cohort B clinical trial (ongoing)

- More uniform support and drug application
- More radial strength and longer duration of support
- Storage room temp instead of refrigeration
- Delivery performance similar to metallic stent. Design like a Multi-Link stent
- Strut thickness 150 u and platinum markers at ends

Absorb Trial: OCT Results

Post-stenting

6-month

24-month

Complete strut apposition

Late acquired incomplete stent apposition with tissue bridges between the struts

Corrugated endolumen

Smooth endoluminal lining

Struts largely disappeared although remnant just visible (arrow)

Serruys et al Lancet 2009

Drug-Eluting Balloons

SeQuent[®] Please Paccocath[®] Technology – B. Braun In.Pact Invatec

DIOR® - EuroCor

Elutax[®] - Aachen Resonance

Cricket™ Mercator

Genie™ Acrostak

ClearWay™ Atrium

CONCLUSIONS

- Stents are the standard of care in PCI
- DES eliminated restenosis in most patients
- First generation stents (Cypher and Taxus) are associated with LST / VLST, ED, SF, and accelerated neoatherosclerosis.
- Second generation stents (Xience, Promus and Resolute) have resolved some of these safety issues (and <u>should not carry the stigma of first generation</u> <u>stents</u>)
- Further safety with new DES designs (absorbable polymers or no polymers)
- BVS is the next frontier
- The delivery of drugs (DEB) and "scaffolding" arteries will become more common than "stenting" arteries

Thank you !