Stent Technology 2010

Luis F. Tami, MD
Cath Lab Director
Memorial Regional Hospital
INTRAVASCULAR STENTS TO PREVENT OCCLUSION AND RESTENOSIS AFTER TRANSLUMINAL ANGIOPLASTY

Ulrich Sigwart, M.D., Jacques Puel, M.D., Velimir Mirkovitch, M.D., Francis Joffre, M.D., and Lukas Kappenberger, M.D.

Why to Stent?

- Mechanically scaffold the artery and create a larger lumen predictably
- Prevent abrupt vessel closure
- Prevent restenosis
Stent Design

- Coil (Gianturco-Roubin)
- Slotted-tube (Palmaz-Schatz)
- Self-expanding mesh (Wallstent)
- Multicellular or corrugated ring with flexible connections (majority of current stents)
- Open-cell or closed cell design
Features & Variables of Stent Design

Strut material

- Stainless steel 316 L (Palmaz-Schatz, Velocity, Liberte)
- Tantalum (Wiktor)
- Nitinol (ACT-One)
- Cobalt chromium (Multilink VISION, Driver)
- Platinum chromium (Taxus & Promus Element)
- New Alloy DES (Xience)
1. Laser-cut stents start as a tube, a laser removes material and a stent remains. Laser-cut stent production leaves square (blunt) edges.

2. Metallic rings are formed into sinusoidal elements that are fused together to comprise a modular stent.

Squared edges | Ultrathin, smooth, edgeless struts
The Limitation of Bare Metal Stents

In-stent Restenosis = Intimal Hyperplasia
Drug-Eluting Stents
First Generation

Stent design and delivery system

Drug-Eluting Stent

Drug

Known FDA-approved drugs with approximated release kinetics

Drug carrier vehicle

“Off the shelf” outdated stent and delivery system

Available, FDA-approved biostable polymers
CYPHER Stent: First patient 10 Years FU

75 yr W

Pre

Dec 1999

Post

1 Year
(2 months DAPT)

7.5 years of clinical experience

2 Years

4 Years

10 Years
Success over In-Stent Restenosis!!
The Sirolimus-Eluting Stent (Cypher)

- **Bx VELOCITY™ Stent**
 - Stainless steel stent
- **Coating:**
 - Blend of 2 polymers (PEVA + PBMA) containing Drug: **Sirolimus** (~ 10um thick)
Sirolimus Eluting Cypher Stent

Sirolimus (Rapamycin): Cytostatic Agent

Released in a controlled manner from the polymer matrix (PEVA + PBMA)

ALL of the drug is released within 3 months
One Year later: TAXUS Stent

Drug
- Paclitaxel
 - Binds tubulin
 - Stabilizes microtubular deconstruction
 - Multi-cellular
 - Multi-functional
 - Cytostatic at low dose

Polymer
- Translute™
 - Polyolefin derivative
 - Uniform
 - Biocompatible
 - Elastomeric
 - Provides controlled release

Stent
- Express²
 - Stainless Steel
 - Maverick balloon system
 - Flexible
 - Deliverable
1st Generation DES…. the good, the bad, and the ugly!

Delayed Healing!

Late loss = 0

Incomplete apposition

Abn Vasomotion

*P<0.001 vs. control

Sirolimus

Control

Giant cells

Eos

Inflammation

Late stent thrombosis

40 mos

IVUS
Stent Thrombosis

1 month

Early \leq 1 \text{ mo}

Acute \leq 1 \text{ d}

Subacute >1\text{ d} - \leq 1\text{ mo}

Late >1 \text{ mo} \leq 1 \text{ year}

Late >1 \text{ mo} \leq 1 \text{ year}

Very Late >1 \text{ year}
And still some restenosis......
Polymer coating damage

Undamaged polymer

Failed to cross calcified lesion
Three patterns of Stent Fracture

Type I; Stent Fracture in the lesion without either aneurysm or myocardial bridge (14 SF)

Type II; Stent Fracture in aneurysm with incomplete apposition (5 SF)

Type III; Stent Fracture in myocardial bridge (1 SF)

H. Doi SCAI/i2 2008
Patients with Stent Fracture N = 32

<table>
<thead>
<tr>
<th></th>
<th>Patients with Stent Fracture</th>
<th>Patients w/o Stent Fracture</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Stent Length (mm)</td>
<td>69.7 ± 24.6</td>
<td>45.0 ± 22.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Overlapping Stents</td>
<td>100.0% (30/30)</td>
<td>89.9% (107/119)</td>
<td>0.06</td>
</tr>
<tr>
<td>Binary Restenosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-segment</td>
<td>21.9% (7/32)</td>
<td>11.7% (16/137)</td>
<td>0.07</td>
</tr>
<tr>
<td>In-stent</td>
<td>15.6% (5/32)*</td>
<td>7.4% (10/136)</td>
<td>0.09</td>
</tr>
<tr>
<td>Stent Thrombosis</td>
<td>3.1% (1/32)</td>
<td>0.0% (0/165)</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* Of the 5/32 fracture patients with in-stent restenosis, 2 patients had restenosis at the site of fracture (1 patient had restenosis at 2 separate fracture sites).
RCA STENT PLACEMENT FOR DIFFUSE DISEASE
More than 2 yrs later, stops DAPT. One week later comes in with a inferior STEMI: Multiple Cypher stent Fractures
“Second” Generation DES: Better designed to be drug eluting stents
Second Generation TAXUS Stent:
TAXUS Liberté™

- Polymer and drug are unchanged
- Maverick² balloon
- 5-wing fold for improved re-wrap and less resistance to withdrawal
- Stainless steel 27%↓ in strut thickness - from 0.0052” (Express²) to 0.0038”
Bioabsorbable polymer (PLGA) is only applied to the abluminal surface of a thin strut (0.0028") PtCr Stent.
Endeavor DES System

Driver Cobalt Alloy Stent

PC Technology

Stent Delivery

Drug: Zotarolimus
Endeavor Polymer + Drug Matrix

PC basecoat (~1 μm thick)

Drug layer
90% zotarolimus
10% PC (~2–3 μm thick)

PC overspray (~0.1 μm thick)

Post-elution ~1-μm coating of PC polymer

Stent strut

3.0-mm stents 500x magnification

Drug/polymer Strut thickness

Endeavor
4 μm
91 μm

Taxus®
16 μm
132 μm

Cypher®
13 μm
140 μm

Total thickness
95 μm
148 μm
153 μm
DES Pooled Programs

Definite/Prob ST* Landmark at 1 year to 5 Years

<table>
<thead>
<tr>
<th>Pooled Data</th>
<th>1 Year</th>
<th>2 Years</th>
<th>3 Years</th>
<th>4 Years</th>
<th>5 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endeavor¹</td>
<td>2131</td>
<td>2043</td>
<td>1987</td>
<td>1681</td>
<td>1116</td>
</tr>
<tr>
<td>Cypher²</td>
<td>858</td>
<td>835</td>
<td>809</td>
<td>783</td>
<td>694</td>
</tr>
<tr>
<td>Taxus²</td>
<td>1351</td>
<td>1300</td>
<td>1117</td>
<td>715</td>
<td>228</td>
</tr>
<tr>
<td>Xience V/Promus³</td>
<td>892</td>
<td>865</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

*ARC Def

2. 5 year Outcomes in the Sirius Trial, Weisz et al. JACC Vol. 53, No. 17, 2009
4. Stone, G et al., New SPIRIT Clinical Data, ACC. 09.
OPTIMIZE (Brazil)

RCT 3 months DAPT vs 12 months

All comers (excluding STEMI)
Reference Vessel Diameter 2.25 mm-4.0 mm

N = 3,200 patients in Brazil

Endeavor Stent
3 months DAPT
n = 1,600

Endeavor Stent
12 months DAPT
n = 1,600

Clinical/MACE

30d 6mo 12mo 15mo

Primary Endpoint: TLF at 12 months
Secondary Endpoints: MI, Cardiac Death, ARC def/prob ST at 30 days, 6 months and 15 months
Drug Therapy: ASA and Clopidogrel 3 or 12 months
Late Loss* (mm)
An (imperfect) Index of Anti-restenotic Efficacy

Mean In-stent values from Sirius, Taxus IV, Endeavor II, and Spirit III at 8-9 months
Solution: Resolute DES System

Driver Cobalt Alloy Stent

Stent Delivery System

BioLinx Polymer

Drug: Zotarolimus
Greater than 85% of the drug is eluted at 60 days
Complete drug content exhausted by 180 days

Carter et al TCT 2006
Endeavor RESOLUTE
9 month Angiographic Results

<table>
<thead>
<tr>
<th></th>
<th>In-stent</th>
<th>In-segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-procedure RVD (mm)</td>
<td></td>
<td>2.79 ± 0.40</td>
</tr>
<tr>
<td>Lesion Length (mm)</td>
<td></td>
<td>15.87 ± 6.51</td>
</tr>
<tr>
<td>MLD (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre</td>
<td>0.82 ± 0.35</td>
<td>0.82 ± 0.35</td>
</tr>
<tr>
<td>post</td>
<td>2.74 ± 0.41</td>
<td>2.33 ± 0.44</td>
</tr>
<tr>
<td>Acute Gain</td>
<td>1.91 ± 0.47</td>
<td>1.51 ± 0.50</td>
</tr>
<tr>
<td>Late loss (mm)</td>
<td>0.67 ± 0.49</td>
<td>0.42 ± 0.50</td>
</tr>
<tr>
<td>ENDEAVOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Loss (mm)</td>
<td>0.22 ± 0.27</td>
<td>0.12 ± 0.27</td>
</tr>
<tr>
<td>Late Loss Index</td>
<td>0.12 ± 0.16</td>
<td>0.08 ± 0.21</td>
</tr>
<tr>
<td>9 mo f/u % DS</td>
<td>10.13 ± 12.63</td>
<td>21.08 ± 10.62</td>
</tr>
<tr>
<td>ABR n (%)</td>
<td>1 (1%)</td>
<td>2 (2.1%)</td>
</tr>
</tbody>
</table>

Meredith et al: EuroInterv 2007; 3:50-53
COMING SOON........
Continuous Sinusoid Technology and Stent strut construction

Program Targets:
- Enhance deliverability and conformability without compromising strength & opacity
- Develop a platform for DES that enables optimized drug transmission

Drug-Filled Stent

<table>
<thead>
<tr>
<th>Diameter (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0038"</td>
</tr>
<tr>
<td>0.0034"</td>
</tr>
<tr>
<td>0.0030"</td>
</tr>
<tr>
<td>0.0025"</td>
</tr>
<tr>
<td>0.0020"</td>
</tr>
</tbody>
</table>
Non-Polymeric DES Approaches

Drug-Filled Stent

- Elution Holes
- Exits through holes
- Drug fills hollow structure

Nanoporous Surface Modification

Development Targets:

- Inhibit restenosis and cell proliferation without the use of a polymer
- Provide for rapid, healthy endothelialization
XIENCE V / PROMUS
Everolimus-eluting Stent

Everolimus

ML VISION® Stent Platform

Durable Fluorinated Copolymer

ML VISION® Stent Delivery System

SPIRIT Clinical Trials
DES Strut and Polymer Thickness
3.0 mm diameter stents, 500x magnification

<table>
<thead>
<tr>
<th>Device</th>
<th>Strut Thickness</th>
<th>Polymer Thickness</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYPHER®</td>
<td>140 μm</td>
<td>12.6 μm</td>
<td>165.2 μm</td>
</tr>
<tr>
<td>TAXUS®</td>
<td>132 μm</td>
<td>16 μm</td>
<td>164 μm</td>
</tr>
<tr>
<td>ENDEAVOR™</td>
<td>91 μm</td>
<td>5.3 μm</td>
<td>101.6 μm</td>
</tr>
<tr>
<td>XIENCE™ V</td>
<td>81 μm</td>
<td>7.8 μm</td>
<td>96.6 μm</td>
</tr>
</tbody>
</table>
Coating Integrity – XIENCE™ V Fluoropolymer (7.8 um thick)

- Uniform, consistent coating integrity upon deployment
- Good adhesion to stent – no bonding, webbing, tearing
- Non-tacky drug matrix prevents “unwanted” adhesions
Late Loss* (mm)
An (imperfect) Index of Anti-restenotic Efficacy

Mean In-stent values from Sirius, Taxus IV Endeavor II, and Spirit III at 8-9 months
XIENCE PRIME: Next generation workhorse everolimus-eluting stent

New SDS Enhanced stent
- More flexible and deliverable
- Higher RBP
- Shorter balloon tapers
New Alloy DES for Xience

- **Best-in-Class safety**
 - Thinner stent struts for less vessel injury and faster re-endothelialization
 - Improved conformability
 - Low recoil
- **Excellent acute performance**
 - Superior deliverability in calcified vessels and tortuous anatomy
 - Better crossability
 - Enhanced visibility
- **Same drug (everolimus) and polymer (fluorinated copolymer) as XIENCE V**
From Cypher to New Cordis RES Technology
CoStar® Sirolimus-Eluting Coronary Stent System

A Stent Specifically Designed for Controlled Drug Delivery from a Bioresorbable PLGA Polymer

Reservoir inlays with PLGA bioresorbable polymers; reduced tissue-polymer contact area
NEVO STENT: Low profile CoCr
Complete elution of the drug and resorption of the polymer from the reservoirs over time leave behind a bare metal stent.
Late Loss* (mm)
An *imperfect* Index of Anti-restenotic Efficacy

Mean In-stent values from Sirius, Taxus IV
Endeavor II, and Spirit III And RES-I at 6-9 months
Nevo Stent: Future possibilities
U.S. Drug-Eluting Stent Launches
2003 through 2013+ Projections

BSC
- TAXUS® Express® Stent
- TAXUS® Express® Atom™
- TAXUS® Liberté® Stent
- TAXUS® Liberté® Atom™
- PROMUS® Stent

JNJ
- Cypher® Stent
- Cypher® 2.25 Stent
- NEVO™ Stent***

ABT
- XIENCE V® Stent
- XIENCE V Nano™ Stent**
- XIENCE Prime™ Stent**
- XIENCE ThinMan Stent***

MDT
- Endeavor® Stent
- Endeavor® Resolute Stent**
- Metallic Bioabsorbable Stent***
- Polymer Bioabsorbable Stent***
- Evolution Program***

Launch Years:
The CardioMind Sparrow™: Stent on a .014” Guide Wire Platform
WHICH NEEDS TO GO AND WHICH NEEDS TO STAY?

Stent
- vascular support
- limits recoil

Drug
- modulates vascular responses

Carrier
- elute appropriate drug load
- control kinetic release
WHICH NEEDS TO GO AND WHICH NEEDS TO STAY?

Stent

- vascular support
- limits recoil
• Bioabsorbable Polymers

• Polymer-Free Drug Delivery
Biodegradable Drug Carrier:
- Biolimus A9® / Poly (Lactic Acid) 50:50 mix
- abuminal surface only (contacts vessel wall)
- 10 microns coating thickness
- degrades in 9 months releasing CO_2 + water
NEVO™ Stent Design

- Chromium-Cobalt Platform
 - Flexible, thin struts, open cell design

- Novel Reservoir Technology
 - Minimizes polymer - vessel wall contact

- Biodegradable Polymer
 - Achieves Cypher-like sirolimus tissue levels
 - Rapid endothelialization
• Benefit – “essentially” BMS after drug delivery (maximal safety)
• Issues – difficulties in prolonging drug elution
• Examples – Translumina (Yukon), Biosensors (BioFreedom), MIV (Vestasync)
BioMatrix Freedom Stent
Micro-structured Surface

- Selectively micro-structured surface holds drug in abluminal surface structures
3D MicroPorous Nanofilm HAp
Non-Polymeric DES Approaches

Drug-Filled Stent

Nanoporous Surface Modification

Development Targets:
• Inhibit restenosis and cell proliferation without the use of a polymer
• Provide for rapid, healthy endothelialization

Drug fills hollow structure

Elution Holes

Exits through holes
WHICH NEEDS TO GO AND WHICH NEEDS TO STAY?

Stent
- vascular support
- limits recoil
Bioabsorbable Stents

- Igaki-Tami (Igaki Medica Planning Co Ltd)
- Magnesium (Biotronik)
- REVA (REVA Medical)
- BTI (Bioabsorbable Therapeutics Inc)
- BVS (Abbott Vascular)
Igaki-Tamai stent

Bioabsorbable Magnesium Stent

BVS (Abbott)

PLLA

PLLA and PDLLA Everolimus
BSC’s Fully Bioabsorbable Stent Programs

Design Goal: The drug & stent gone within 12 months
“Leave Nothing Behind”

<table>
<thead>
<tr>
<th>Bioabsorbable Stent Projects</th>
<th>Absorbed within</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioabsorbable Metal Stent (Magnesium)</td>
<td>~6 months</td>
</tr>
<tr>
<td>Bioabsorbable Metal Stent (Iron)</td>
<td>+24 months</td>
</tr>
<tr>
<td>Bioabsorbable Polymer Stent (PLLA)</td>
<td>+24 months</td>
</tr>
<tr>
<td>Bioabsorbable Polymer Stent (Tyrosine-derived Polycarbonate)</td>
<td>+24 months</td>
</tr>
</tbody>
</table>
How about DRUG ELUTING BALLOONS (no stent or provisional stenting)?
Local Drug Delivery: Paccocath-DEB vs. DES

<table>
<thead>
<tr>
<th>Drug-Eluting Balloon</th>
<th>Drug-Eluting Stent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate release</td>
<td>Slow release</td>
</tr>
<tr>
<td>Short-lasting exposure</td>
<td>Persistent drug exposure</td>
</tr>
<tr>
<td>~ 300 - 600 µg dose</td>
<td>~ 100 - 200 µg dose</td>
</tr>
<tr>
<td>No polymers</td>
<td>Polymer</td>
</tr>
<tr>
<td>Wiped off the balloon surface</td>
<td>Diffusion from stent struts</td>
</tr>
<tr>
<td>Premounted stent optional</td>
<td>Stent mandatory</td>
</tr>
</tbody>
</table>

- Conventional angioplasty balloon catheters
- Coated with paclitaxel
 (+ contrast medium as matrix builder and release supporting additive)
- Controlled dose, homogeneity of coating, non-toxic excipients

Scheller et al., Circulation 2004;110:810. Speck et al., Radiology 2006;240:411. unpublished data
Drug Coated Balloon

Design Goal: Provide balloon dilatation with a drug coated balloon without the use of a stent

Potential Indications

- ISR
- Bifurcation/Side Branch
- Small Vessels
- Unable to deliver stent
- Replace POBA
- Workhorse treatment for CAD
- Peripheral vascular use

Drug Coating Design

Paclitaxel + Excipient

- Similar drug tissue concentration as the TAXUS® Express® Stent at 45 days
- Paclitaxel is a highly lipophilic molecule
- Excipient used in other pharmaceutical technologies

<table>
<thead>
<tr>
<th></th>
<th>SeQuent Please</th>
<th>Taxus</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>66</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>6.2 ± 0.8</td>
<td>6.2 ± 0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Control angiography</td>
<td>58 (87.9 %)</td>
<td>54 (90.0 %)</td>
<td>0.8</td>
</tr>
<tr>
<td>Late lumen loss</td>
<td>0.19 ± 0.38</td>
<td>0.47 ± 0.71</td>
<td>0.03</td>
</tr>
<tr>
<td>Binary restenosis in segment</td>
<td>2 / 58 (3.4 %)</td>
<td>11 / 54 (20.4 %)</td>
<td>0.007</td>
</tr>
<tr>
<td>TLR</td>
<td>2 / 64 (3.1 %)</td>
<td>10 / 60 (16.7 %)</td>
<td>0.02</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0 / 64 (0.0 %)</td>
<td>1 / 60 (1.7 %)</td>
<td>1</td>
</tr>
<tr>
<td>Death</td>
<td>2 / 64 (3.1 %)</td>
<td>1 / 60 (1.7 %)</td>
<td>1</td>
</tr>
<tr>
<td>MACE (w/o noncardiac death)</td>
<td>3 / 64 (4.7 %)</td>
<td>11 / 60 (18.3 %)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

n=126
Much more to come…

Thanks