#### CATH LAB SYMPOSIUM 2010

## Stent Technology 2010

Luis F. Tami, MD Cath Lab Director Memorial Regional Hospital

## First Report of Coronary Stenting in 1987



#### INTRAVASCULAR STENTS TO PREVENT OCCLUSION AND RESTENOSIS AFTER TRANSLUMINAL ANGIOPLASTY

Ulrich Sigwart, M.D., Jacques Puel, M.D., Velimir Mirkovitch, M.D., Francis Joffre, M.D., and Lukas Kappenberger, M.D.

N Engl J Med 1987; 316:701-6

Ulrich Sigwarth (Lausanne 1986) First human coronary implantation

## Why to Stent?

- Mechanically scaffold the artery and create a larger lumen predictably
- Prevent abrupt vessel closure

Prevent restenosis



## **Stent Design**

- Coil (Gianturco-Roubin)
- Slotted-tube (Palmaz-Schatz)
- Self-expanding mesh (Wallstent)
- multicellular or corrugated ring with flexible connections (majority of current stents)
- Open-cell or closed cell design























### Features & Variables of Stent Design

### **Strut material**



- Stainless steel 316 L (Palmaz-Schatz, Velocity L)
- Tantalum (Wiktor)
- Nitinol (ACT-One)
- Cobalt chromium (Multilink VISION, Driver)
- Platinum chromium (Taxus & Promus Element)
- New Alloy DES (Xience)



## **Basic strut types / Construction**

1. Laser-cut stents start as a tube, a laser removes material and a stent remains. Laser-cut stent production leaves square (blunt) edges.



**Squared edges** 



2. Metallic rings are formed into sinusoidal elements that are fused together to comprise a modular stent.



Ultrathin, smooth, edgeless struts



## The Limitation of Bare Metal Stents



### In-stent Restenosis = Intimal Hyperplasia

## Drug-Eluting Stents First Generation



### **CYPHER Stent: First patient 10 Years FU**



Success over In-Stent Restenosis!!

## The Sirolimus-Eluting Stent (Cypher)



 Bx VELOCITY<sup>TM</sup>Stent
 Stainless steel stent
 Coating:
 Blend of 2 polymers (PEVA + PBMA) containing Drug: Sirolimus (~ 10um thick)

### Sirolimus Eluting Cypher Stent



Sirolimus (Rapamycin): Cytostatic Agent

Released in a controlled manner from the polymer matrix (PEVA + PBMA) ALL of the drug is released within 3 months

## **One Year later: TAXUS Stent**

#### Drug



#### Paclitaxel

- Binds tubulin
- Stabilizes microtubular deconstruction
- Multi-cellular
- Multi-functional
- Oytostatic at low dose

## Polymer



#### **Stent**



#### Translute<sup>™</sup>

- Polyolefin derivative
- Uniform
- Biocompatible
- Elastomeric
- Provides controlled release

### Express<sup>2</sup>

- Stainless Steel
- Maverick balloon system
- Flexible
- Deliverable

## 1<sup>st</sup> Generation DES.... the good, the bad, and the ugly!



## **Stent Thrombosis**



## And still some restenosis..... Polymer coating damage



Undamaged polymer



Failed to cross calcified lesion

### **Three patterns of Stent Fracture**

## Type I; Stent Fracture in the lesion without either aneurysm or myocardial bridge (14 SF)



Type II; Stent Fracture in aneurysm with incomplete apposition (5 SF)



#### Type III; Stent Fracture in myocardial bridge (1 SF)



H.Doi SCAI/i2 2008

### ACROSS CYPHER: n= 200 16% Angio Stent Fractures at 6 mos

|                        | Patients with<br>Stent Fracture<br>N = 32 | Patients w/o Stent<br>Fracture<br>N = 168 | p-<br>value |
|------------------------|-------------------------------------------|-------------------------------------------|-------------|
| Mean Stent Length (mm) | <b>69.7</b> ± <b>24.6</b>                 | <b>45.0 ± 22.2</b>                        | <0.001      |
| Overlapping Stents     | 100.0% (30/30)                            | 89.9% (107/119)                           | 0.06        |
| Binary Restenosis      |                                           |                                           |             |
| In-segment             | 21.9% (7/32)                              | 11.7% (16/137)                            | 0.07        |
| In-stent               | 15.6% (5/32)*                             | 7.4% (10/136 )                            | 0.09        |
| Stent Thrombosis       | 3.1% (1/32)                               | 0.0% (0/165)                              | 0.16        |

\* Of the 5/32 fracture patients with in-stent restenosis, 2 patients had restenosis at the site of fracture (1 patient had restenosis at 2 separate fracture sites).

#### RCA STENT PLACEMENT FOR DIFFUSE DISEASE



More than 2 yrs later, stops DAPT. One week later comes in with a inferior STEMI: <u>Multiple</u> <u>Cypher stent</u> Fractures



"Second" Generation DES: Better designed to be drug eluting stents

## Second Generation TAXUS Stent: TAXUS Liberté™



- Polymer and drug are unchanged
- Maverick<sup>2</sup> balloon
- 5-wing fold for improved re-wrap and less resistance to withdrawal
- Stainless steel
   27%↓ in strut
   thickness from
   0.0052" (Express<sup>2</sup>)
   to 0.0038"

### **Ultra-thin Abluminal Bioabsorbable Polymer**



## Bioabsorbable polymer (PLGA) is <u>only</u> applied to the abluminal surface of a thin strut (0.0028") PtCr Stent



## **Endeavor DES System**

#### **Driver Cobalt Alloy Stent**



#### PC Technology



#### **Stent Delivery**



#### Drug: Zotarolimus



## Endeavor Polymer + Drug Matrix



### DES Pooled Programs Definite/Prob ST\* Landmark at 1 year to 5 Years



4. Stone. G et al., New SPIRIT Clinical Data, ACC, 09

### OPTIMIZE (Brazil) RCT 3 months DAPT vs 12 months



Primary Endpoint: TLF at 12 months Secondary Endpoints: MI, Cardiac Death, ARC def/prob ST at 30 days, 6 months and 15 months Drug Therapy: ASA and Clopidogrel 3 or 12 months

### Late Loss\* (mm) An (imperfect) Index of Anti-restenotic Efficacy



### Solution: Resolute DES System

#### **Driver Cobalt Alloy Stent**



#### BioLinx Polymer



#### Stent Delivery System



#### Drug: Zotarolimus



### **Resolute Elution Kinetics**

**BioLinx Polymer in vivo Elution** 



Cartér et al TCT 2006

### Endeavor RESOLUTE 9 month Angiographic Results

| n=96                       | In-stent           | In-segment                        |
|----------------------------|--------------------|-----------------------------------|
| Pre-procedure RVD (mm)     |                    | 2.79 ± 0.40                       |
| Lesion Length (mm)         |                    | 15.87 ± 6.51                      |
| MLD (mm) pre               |                    | 0.82 ± 0.35                       |
| post                       | 2.74 ± 0.41        | 2.33 ± 0.44                       |
| Acute Gain                 | 1.91 ± 0.47        | 1.51± 0.50                        |
| Late loss (mm) ENDEAVOR    | <b>0.67 ± 0.49</b> | $\textbf{0.42} \pm \textbf{0.50}$ |
| Late Loss (mm)             | 0.22 ± 0.27        | 0.12 ± 0.27                       |
| Late Loss Index            | 0.12 ± 0.16        | 0.08 ± 0.21                       |
| <mark>9 mo f/u % DS</mark> | 10.13 ± 12.63      | 21.08 ± 10.62                     |
| ABR n (%)                  | 1 (1%)             | 2 (2.1%)                          |

\*Meredith et al: EuroInterv 2007; 3:50-53

## COMING SOON.....

# Continuous Sinusoid Technology and Stent strut construction

#### **Continuous Sinusoid Technology**



**Program Targets:** 

- Enhance deliverability and conformability without compromising strength & opacity
- Develop a platform for DES that enables optimized drug transmission



## **Non-Polymeric DES Approaches**

#### **Drug-Filled Stent**





#### Nanoporous Surface Modification



#### **Development Targets:**

- Inhibit restenosis and cell proliferation <u>without</u> the use of a polymer
- Provide for rapid, healthy endothelialization

## XIENCE V / PROMUS Everolimus-eluting Stent



SPIRIT Clinical Trials

### DES Strut and Polymer Thickness 3.0 mm diameter stents, 500x magnification



# Coating Integrity – XIENCE™ V Fluoropolymer (7.8 um thick)



Uniform, consistent coating integrity upon deployment
Good adhesion to stent – no bonding, webbing, tearing
Non-tacky drug matrix prevents "unwanted" adhesions

### Late Loss\* (mm) An (imperfect) Index of Anti-restenotic Efficacy



Endeavor II, and Spirit III at 8-9 months

### XIENCE PRIME : Next generation workhorse everolimus-eluting stent



# **New Alloy DES for Xience**



- Best-in-Class safety
  - Thinner stent struts for less vessel injury and faster re-endothelialization
  - Improved conformability
  - Low recoil
- Excellent acute performance
  - Superior deliverability in calcified vessels and tortuous anatomy
  - Better crossability
  - Enhanced visibility
- Same drug (everolimus) and polymer (fluorinated copolymer) as XIENCE V

# From Cypher to New Cordis RES Technology

## CoStar<sup>®</sup> Sirolimus-Eluting Coronary Stent System

#### A Stent Specifically Designed for Controlled Drug Delivery from a Bioresorbable PLGA Polymer









# **NEVO STENT:** Low profile CoCr







# Flexible Design with Non-Deforming Reservoirs





Complete elution of the drug and resorbtion of the polymer from the reservoirs over time leave behind a bare metal stent

### Late Loss\* (mm) An (*imperfect*) Index of Anti-restenotic Efficacy



# **Nevo Stent: Future posibilities**

**MULTIPLE-DRUG RELEASE** 



MULTIPLE-DRUG, BIDIRECTIONAL RELEASE



MULTIPLE-DRUG, BIDIRECTIONAL RELEASE



### U.S. Drug-Eluting Stent Launches 2003 through 2013+ Projections



### The CardioMind Sparrow<sup>TM</sup>: Stent on a .014" Guide Wire Platform



### WHICH NEEDS TO GO AND WHICH NEEDS TO STAY ?



release

#### WHICH NEEDS TO GO AND WHICH NEEDS TO STAY ?





### **New Drug Carrier Systems**

# Bioabsorbable Polymers

# Polymer-Free Drug Delivery

## BioMatrix Stent Platform Bioabsorbable Polymer DES

#### ΒΙΟΜΑΤRIΧ



#### **Biodegradable Drug Carrier:**

- Biolimus A9<sup>®</sup> / Poly (Lactic Acid) 50:50 mix
- abluminal surface only (contacts vessel wall)
- 10 microns coating thickness
- degrades in 9 months releasing CO<sub>2</sub>+ water



# NEVO<sup>™</sup> Stent Design





Chromium-Cobalt Platform Flexible, thin struts, open cell design Novel Reservoir Technology Minimizes polymer - vessel wall contact Biodegradable Polymer **Achieves Cypher-like sirolimus** tissue levels

Rapid endotheliazation

## **New DES Carrier Systems**

### **Polymer-Free Drug Delivery**

- Benefit "essentially" BMS after drug delivery (maximal safety)
- Issues difficulties in prolonging drug elution
- Examples Translumina (Yukon), Biosensors (BioFreedom), MIV (Vestasync)

#### BioMatrix Freedom Stent Micro-structured Surface



 Selectively micro-structured surface holds drug in abluminal surface structures

# **3D MicroPorous Nanofilm HAp**



# **Non-Polymeric DES Approaches**

#### **Drug-Filled Stent**





#### Nanoporous Surface Modification



#### **Development Targets:**

- Inhibit restenosis and cell proliferation <u>without</u> the use of a polymer
- Provide for rapid, healthy endothelialization

#### WHICH NEEDS TO GO AND WHICH NEEDS TO STAY ?



### **Bioabsorbable Stents**

Igaki-Tami (Igaki Medica Planning Co Ltd)

Magnesium (Biotronik)

- REVA (REVA Medical)
- BTI (Bioabsorbable Therapeutics Inc)
- BVS (Abbott Vascular)

### Igaki-Tamai stent



#### PLLA

#### Bioabsorbable Magnesium Stent







PLLA and PDLLA Everolimus

### **BSC's Fully Bioabsorbable Stent Programs**

#### Design Goal: The drug & stent gone within 12 months "Leave Nothing Behind"

|                | 1900 | Bioabsorbable<br>Metal Stent<br>(Magnesium)                        | Absorbed within<br>~6 months  |
|----------------|------|--------------------------------------------------------------------|-------------------------------|
|                |      |                                                                    |                               |
| Stent Projects | 190g | Bioabsorbable<br>Metal Stent<br>(Iron)                             | Absorbed within<br>+24 months |
|                |      |                                                                    |                               |
|                |      | Bioabsorbable<br>Polymer Stent<br>(PLLA)                           | Absorbed within<br>+24 months |
|                |      |                                                                    |                               |
|                |      | Bioabsorbable<br>Polymer Stent<br>(Tyrosine-derived Polycarbonate) | Absorbed within<br>+24 months |

**BSC's Bioabsorbable** 

How about DRUG ELUTING BALLOONS (no stent or provisional stenting)?

### Local Drug Delivery: Paccocath-DEB vs. DES

#### **Drug-Eluting Balloon**

Immediate release Short-lasting exposure ~ 300 - 600 µg dose No polymers Wiped off the balloon surface Premounted stent optional

#### **Drug-Eluting Stent**

Slow release Persistent drug exposure ~ 100 - 200 µg dose Polymer Diffusion from stent struts Stent mandatory



- Conventional angioplasty balloon catheters
- Coated with paclitaxel
  - (+ contrast medium as matrix builder and release supporting additive)
- Controlled dose, homogeneity of coating, non-toxic excipients

Scheller et al., Circulation 2004;110:810. Speck et al., Radiology 2006;240:411. unpublished data

# **Drug Coated Balloon**

Design Goal: Provide balloon dilatation with a drug coated balloon without the use of a stent

#### **Potential Indications**

- ISR
- Bifurcation/Side Branch
- Small Vessels
- Unable to deliver stent
- Replace POBA
- Workhorse treatment for CAD
- Peripheral vascular use

#### **Drug Coating Design**

Paclitaxel + Excipient

- Similar drug tissue concentration as the TAXUS<sup>®</sup> Express<sup>®</sup> Stent at 45 days
- Paclitaxel is a highly lipophilic molecule
- Excipient used in other pharmaceutical technologies



### PEPCAD II ISR - Outcome, 6 months FU

#### n=126

|                                 | SeQuent Please                                                           | Taxus                                                        | р     |
|---------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|-------|
| n                               | 66                                                                       | 60                                                           |       |
| Follow-up                       | 6.2 ± 0.8                                                                | 6.2 ± 0.8                                                    | 0.7   |
| Control angiography             | 58 (87.9 %)                                                              | 54 (90.0 %)                                                  | 0.8   |
| Late lumen loss                 | 0.19 ± 0.38                                                              | 0.47 ± 0.71                                                  | 0.03  |
| Binary restenosis in<br>segment | 2 / 58 (3.4 %)                                                           | 11 / 54 (20.4 %)                                             | 0.007 |
| TLR                             | 2 / 64 (3.1 %)                                                           | 10 / 60 (16.7 %)                                             | 0.02  |
| Myocardial infarction           | 0 / 64 (0.0 %)                                                           | <b>1 / 60 (1.7 %)</b><br>NSTEMI due to side branch occlusion | 1     |
| Death                           | <b>2 / 64 (3.1 %)</b><br>1 non-cardiac, 1 cardiac but not lesion related | <b>1 / 60 (1.7 %)</b><br>non-cardiac death                   | 1     |
| MACE (w / o noncardiac death)   | 3 / 64 (4.7 %)                                                           | 11 / 60 (18.3 %)                                             | 0.02  |

# Much more to come...



