Carotid Artery Stent: Is it ready for prime time?

Luis F. Tami, MD, FACC, FSCAI

Interventional Cardiology and Vascular Medicine
Memorial Regional Hospital

August 2010

CAE and CAS

CAE 56 yrs old and the most studied vascular operation in history of medicine

CAS 15 yrs old and the most devated and scrutinized interventional procedure

Stroke

- Third most common cause of death
- 750,000 strokes each year in the US.
- Single most important cause of long term intellectual and physical disability.
- Huge economical burden on society.
- Approx 25% of strokes are related to extracranial carotid artery disease.

INDICATIONS

The ONLY reason for treating bifurcation carotid stenosis is:

to reduce the risk of stroke

INDICATIONS

The stroke risk associated with the interventionshould not exceed the stroke risk related to the natural history of the disease!

- Symptomatic: 10 –15% next 6-9 months
- Asymptomatic: 2-3% per year

CAE for Carotid Stenosis

CAROTID ENDARTERECTOMY INDICATIONS

GOAL: STROKE PREVENTION (IF BENEFIT > RISK)

SYMPTOMATIC: > 50%

NASCET I and II and ECST

If risk of surgery is less than 6%

ASYMPTOMATIC: >80%

ACAS and **ACST**

If risk of surgery is less than 3%

Endarterectomy Trials: Exclusions

NASCET and ACAS Exclusions

- Age>79
- Prior ipsilateral CEA
- Unstable coronary syndrome
- Myocardial infarct in previous 6 months
- Cardiac valvular or rhythm abnormality likely to cause embolic cerebrovascular symptoms
- Contralateral occlusion
- A more severe lesion cranial to the surgical lesion

- Contralateral CEA within previous 4 months
- Uncontrolled hypertension or diabetes
- Organ failure likely to cause death within 5 years
- Total occlusion
- Major surgical procedure in previous 30 days
- Prior severe CVA
- Progressing neurologic syndrome

Endarterectomy outcomes in high surgical risk patients

There are no randomized trials in high surgical risk patients

to guide recommendations for therapy

U.S. Food and Drug Administration

FDA News FOR IMMEDIATE RELEASE August 31, 2004

Media Inquiries: (301) 827-6242

Consumer Inquiries: 888-INFO-FDA

FDA Approves Stent System as an option for patients at high risk for CAE

Carotid Artery Stenting: INDICATIONS

FDA approved CAS as an alternative to CAE in patients at high risk for surgery

1. ANATOMICAL:

- Lesions too high or too low
- Tandem lesions
- Contralateral occlusion or stenosis
- Restenosis post CAE
- Post radiation or radical neck surgery
- Neck too short, C-spine immobility
- Contralateral laryngeal nerve palsy

Carotid Artery Stenting: INDICATIONS

2. PHYSIOLOGICAL (COMORBIDITIES):

- Older than 75
- CHF class III or IV
- EF less than 30%
- USA or recent MI
- Severe COPD
- Cardiac disease requiring surgery within 6 weeks
- Severe CAD (2 lesions > 70% stenosis or abn. Stress test in 2 territories or large defect)
- Renal failure requiring dialysis.

Diagnostic Algorithm for Extracranial Carotid Disease

CASE: High surgical risk

- 81 yr old, severe CAD with USA and needs CABG.
- Found to have an asymptomatic 90% R ICA stenosis
- Hypertension
- Hypercholesterolemia

Duplex US

PW 70% WF 70Hz SV1.5mm M2 3.5MHz 1.7cm

--180

--120

-60

+ L Prox ICA PSV -92.4 cm/s EDV -23.6 cm/s

3,6sec

LT ICA PROX

Aortic Arch

Aortic Arch Types

R ICA

Filter

After predilation

Cerebral protection is necessary:

Filters Approved in US

CASE: Multiple high risk features

- 80 yr old Tonsillar <u>cancer</u> 1988, s/p R radical neck dissection 1988 and <u>RT</u>
- Bilateral CAE 10 yrs ago
- Cardiomyopathy, ICD

 Asymptomatic, progressive R CCA stenosis by Duplex

L ICA

R Carotid Stenosis Post Neck radiation

Carotid Stenting

Balloon predilatation

Post Stenting

CASE: Post CAE restenosis

iabetic w neuronypercholestero
Sep 2006 afterwith a TIA/mir

realed critical r

LICA
Post CAE
restenosis

18 months later: Carotid Duplex

What about data?

Modern Randomized Trials

•US TRIALS:

Sapphire, NEJM 2004

CREST, on line NEJM 5/26/10

•EUROPEAN

EVA 3S, NEJM 2006

SPACE, Lancet 2006

ICSS, Lancet 2010

Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy

The SAPPHIRE Study

- •U.S. Randomized, Multicenter trial in high-risk patients
- •Symptomatic > 50% or asymptomatic > 80% stenosis
- Experienced Operators

SAPPHIRE: Trial Design

Integrated multi-specialty team Surgeon, Interventionalist, Neurologist

Surgical Refusal registry N=406

Randomized N=310

Interventional Refusal registry
N=7

CAS

CEA

Primary end-point: Death, any CVA and MI at 30 days

SAPPHIRE30-Day Events

	STENT	CEA
	(156 pts)	(151 pts)
DEATH	0.6%	2%
CVA: Major:	0.6%	2%
Minor:	3.8%	3.3%
MI	2.6%	7.3%
Death or CVA:	4.5%	6.6%
Death/MI/CVA:	5.8%	12.6%*

p = 0.047

SAPPHIRE: 1 year primary endpoint

SAPPHIRE Randomized Cohorts: CEA and CAS 30 day stroke and ipsilateral stroke 31-1080 days

No advantage of CEA over CAS in efficacy

Time (Days)

SAPPHIRE: Conclusions

- First randomized study comparing carotid stenting with emboli protection to CAE in high risk patients
- Major adverse cardiac events included MI unlike prior CAE trials
- Carotid artery stenting showed to be an option to CAE in high-risk patients
- Led to FDA approval in that group of patients

Carotid Revascularization Endarterectomy Vs Stenting Trial: CREST

Presented at the Inter national Stroke Conference in San Antonio, Feb 26, 2010 Published on line NEJM on May 26, 2010

CREST: FINAL ENROLLMENT

CREST

• CREST is a decade long, multi-million dollar NIH study involving nearly 120 centers and 224 interventionalists

• It is the largest (2500) randomized prospective study of CAS vs. CEA in both symptomatic and asymptomatic as well as low and high surgical risk patients.

CREST: Primary Endpoint*

Periprocedural period

*Death, any Stroke or MI

CREST: Periprocedural

Major CVA: 0.9 vs 0.6%

Ipsilateral Stroke After 30d and up to 4 yrs

CREST: Symptom status

Any CVA or post procedural ipsilateral CVA

CREST: Age Influence

CREST CONCLUSION

- CAS and CEA have similar global outcomes:
 - CAS caused more minor strokes than CEA
 - CEA caused more MIs and cranial nerve palsies
 - Symptomatic status: little more advantage for CEA
- AGE:
 - Younger patients slightly better with CAS
 - Older patients better with surgery

How about New Technology?

New stents

New Embolic Protection Devices:

New Filters

Proximal Protection

MGuard Stent

EPIC FiberNet® EPS

No delivery system required with a crossing profile 1.7 to 2.9 F

Fiber-based filter conforms to asymmetrical vessels

EPIC (30 days results)
All CVA: 2.1%
Death 0.4
Mi 0.4%

Particle entrapment as small as 40 µm

30 Day Event Rates

Proximal Cerebral Protection

Proximal Protection may be the "game changer" in Carotid Revascularization

Christopher White. Editorial JACC 2010:55: 1668

EPD Categories

The Concept: Flow Reversal

Applicable to the most complex anatomies

PROXIMAL PROTECTION TRIALS

- •EMPIRE : Gore Flow Reversal (WL GORE)
- •ARMOUR: Mo.MA Device (InVatec).
- •Italian Single Center Experience (1300 patients) using the MoMA Device

EMPIRE

GORE FLOW REVERSAL SYSTEM

MAJOR ADVERSE EVENT RATE AT 30 DAYS (N=245)

ARMOUR TRIAL

USING THE MO.MA PROXIMAL PROTECTION (N=257)

*MACCE = Death + CVA + MI

ITALIAN REGISTRY: PROXIMAL PROTECTION USING THE MO.MA DEVICE

30-DAY OUTCOMES (N=1300)

CONCLUSION

- Optimal role of CAS Vs CAE continues to be debated.... but they are COMPLEMENTARY
- CAS is the procedure of choice in many highsurgical-risk patients (unstable cardiac disease, post CAE restenosis, post radiation and other anatomical risk factors).
- Favor CAE in elderly patients with symptoms especially with aortic arch disease (difficult access, calcified lesions and complex anatomies)

CONCLUSION

- Although safety of CAS in "low risk" patients (young, asymptomatic with favorable anatomy) is proven by current trials when done by experienced operators, the best approach at a given Institution should be based on a Team Approach
- However, CMS reimbursement, financial and turf issues are currently the major obstacles for adoption of stenting and are some of the most important factors in the decision making today

CONCLUSION

• Technology will continue to improve outcomes in CAS (i.e. new filters, stents, and proximal protection)

Thank you!