Kidney Disease

Implications for the Management of Cardiovascular Disease

William R. Alexis, MD, MPH, FACC, FSCAI Cardiovascular Consultants of South Florida Memorial Cardiac and Vascular Institute

Renal Disease in the PCI Population

- CRI was present in ~ 25% of the patients¹, and among patients undergoing primary PCI for acute MI, ~ 20% of the population had baseline CRI.²
- Mild elevations of serum creatinine after contrast exposure (> 1.5 mg/dL) are associated with the development of cardiovascular events.³

¹ Chew DP et al, Am J Cardiol. 2003;92:919-923 ² Stone GW et al, N Engl J Med 2002;346:957-966 ³ Hall WD. Am J Med Sci, 1999;317:176–182.

How to Assess Renal Function?

- SCr alone is not a reliable indicator of renal function.
- Glomerular filtration rate (GFR) is the best measure of overall kidney function.
- The normal level of GFR varies according to age, gender, and body size. Normal GFR in young adults is ~ 120 to 130 ml/min per 1.73m² and declines with age.

How to Assess Renal Function?

Abbreviated Modification of Diet in Renal Disease equation (MDRD) :

eGFR, ml/min/1.73 m²= 186 x (Serum Creatinine [mg/dL]) -1.154 x (Age-0.203x (0.742 if female) x (1.210 if African American)

Cockcroft-Gault equation:

Creatinine Clearance, ml/min	_	(140- age) x Body Weight [kg]*	
		[Sorum Croatining mg/dl] x 72	
* Multiple by 0.8 in female			

In-hospital Complications post PCI in Relation to Renal Function

Gruberg L et al, Catheter Cardiovasc Interv. 2002;55:66-72

Major Bleeding in Relation to Renal Function: Meta-Analysis of 3 Randomized Trials

Creatinine clearance

Chew DP et al, Am J Cardiol. 2003;92:919-923

Antithrombotic Therapy in Patients with CRI

Dose adjustment is necessary in patients treated with:

- Bivalirudin
- Eptifibatide
- LMWH

30-day Outcomes Post-PCI in Relation to Renal Function

Two-year Mortality Post PCI in Relation to Renal Function

2650 consecutive patients from Mayo Clinic

Contrast-Induced Nephropathy

- With the increasing use of contrast media, CIN has become the 3rd cause of hospital acquired acute renal failure*
- CIN occurs in ~1% of cases in the general population, though may be as high as 50% in patients with CRI
- Depending upon the definition used, CIN may occur in ~3-10% of all cases

Contrast-Induced Nephropathy

Definition

 New onset or exacerbation of renal dysfunction after contrast administration in the absence of other causes:

increase by > 25% or absolute ↑ of > 0.5 mg/dL

Occurs 24 to 48 hrs post-contrast exposure, with creatinine peaking 5 to 7 days later and normalizing within 7 to 10 days in most cases

Contrast Induced Nephropathy: Pathogenesis

Hemodynamic changes

- Reduction renal blood flow
- Deceleration of red blood cell velocity
- Decrease in oxygen tension

Apoptosis

- DNA fragmentation
- Increase in activity of caspases

Direct toxicity to renal epithelium

- Prominent vacuolisation
- Appearance of intracytoplasmic granular structure
- Occasional cell necrosis
- Enhanced production of oxygen free radicals

Change in concentration of vasoactive substances

- An increased serum level of endothelin
- Decrease in PGE2
- Decrease in NO production
- Increase in adenosine

Contrast-Induced Nephropathy: In-hospital Mortality

McCullough P et al. Am J Med 1997; 103-375

CIN after PCI in relation to Chronic Kidney Disease

Dangas et al, *Am J Cardiol* 2005; 95:13-19.

PTCA in Chronic Renal Failure

- 440 patients with baseline creatinine > 1.8mg/dl
- 158 pts had 25% rise in serum creatinine and 282 pts had no rise
- Procedure success >97% in both groups

Independent predictors of late death: Creatinine rise (OR 3.86, p<0.001) and Age (OR 1.05, p=0.03)

Gruberg et al. Circ 1999

Contrast-Induced Nephropathy: Resource Utilization

Endpoint (%)	Pa	P.voluo	
	With CIN	Without CIN	P-value
Hospital length of stay (days)	9.6 <u>+</u> 7.2	3.2 <u>+</u> 6.4	<0.001
ICU length of stay (days)	2.3 <u>+</u> 4.4	0.6 <u>+</u> 1.8	<0.0001
Need for hemodialysis (%)	12	0	<0.0001

lakovou I et al, J Am Coll Cardiol. 2002;39:2A

Risk Factors for the Development of Contrast-Induced Nephropathy

Fixed (non-modifiable) risk factors

Pre-existing renal failure

Diabetes mellitus

Advanced congestive heart failure

Reduced left ventricular ejection fraction

Acute myocardial infarction

Cardiogenic shock

Renal transplant

Modifiable risk factors

Volume and type of contrast medium Multiple contrast injections within 72 hours Hemodynamic instability **Dehydration** Anemia/Blood loss Intra-aortic balloon pump Low serum albumin level (<35 g/L) Angiotensin converting enzyme inhibitors **Diuretics** Nephrotoxic drugs (nonsteroidal antiinflammatory agents, antibiotics,

cyclosporine, etc.)

Risk Stratification of Patients Undergoing Contrast Exposure

Mehran R et al. *JACC* 2004;44:1393-1399.

Rates of CIN as a Function of Contrast Medium Volume in Diabetic Cohort

Nikolsky E et al. *AJC* 2004;94:300-305.

Risk of Contrast-induced Nephropathy in Relation to Baseline Hematocrit

Nikolsky E et al. *Kidney Int*. 2005;67:706-713.

CIN Risk Score & 1-year Mortality

Prognostic significance of the proposed risk score for CIN extended to prediction of 1-year mortality. (Red bars = development dataset; blue bars = validation dataset.)

Mehran et al. JACC 2004;44:1393-1399.

Case Example

- 76 y.o. female with diabetes, Hgb 11.5 g/dl and eGFR 36 ml/min
- CIN risk score is 15 if contrast medium volume is 100 ml
 - CIN risk is 26%
 - Dialysis risk is 1%
- CIN risk score is >16 if contrast medium volume is 200 ml
 - CIN risk is 57%
 - Dialysis risk is 12%

Prevention of Contrast Induced Nephropathy

Treatment Modalities Assessed in Randomized Trials on Prevention of CIN

Treatment	Effect
Hydration	+
Hemofiltration	+
Sodium bicarbonate	+/-
<i>N</i> -acetyl-l-cysteine (Mucomyst)	+/-
Dopamine	+/-
Fenoldopam	+/-
Theophylline	+/-
Calcium channel blockers	+/-
Hemodialysis	+/-
Atrial natriuretic peptide	+/-
Statins	+/-

+ positive effect; - no effect; +/- conflicting data

Optimal Hydration Regimen

Mueller et al Arch Intern Med 2002

Optimal Hydration 0.9% NS vs 0.45% NS

Mueller et al Arch Intern Med 2002

RenalGuard[™] for CI-AKI prevention is designed to:

- Create and maintain high urine output
- Prevent contrast agents from clogging tubules
- Limit toxin exposure in kidneys
- <u>Automated matched fluid</u> replacement in real-time to reduce side effects associated with over- or under-hydration

REMEDIAL II <u>REnal Insufficiency Following Contrast</u> <u>MEDIA</u> Administration II TriaL RenalGuard system in high risk patients for contrast induced acute kidney injury

> Carlo Briguori, MD, PhD Laboratoy of Interventional Cardiology Clinica Mediterranea, Naples – Italy

> > ACC 2011

REMEDIAL II

 DESIGN: Prospective, randomized, double-arm, multicenters clinical study

Elective contrast media administration in patients at high risk for CI-AKI (risk score ≥11 and/or eGFR≤30 ml/min/1.73 m²)

Urine Volume at 24 hours

Primary endpoint

The Prevention of CIN by Hemofiltration

Design

- DESIGN: Prospective, openlabeled, randomized trial
- OBJECTIVE: to investigate the role of hemofiltration, as compared with isotonicsaline hydration, in preventing CIN in patients with renal failure

A total of 114 consecutive patients with CRI (SCr >2 mg/dl [176.8 micromol/l]) undergoing elective coronary interventions at Centro Cardiologico Monzino in Milan from 2000 to 2001 Randomization Hemofiltration 1000 ml/hr Isotonic-saline without weight loss in ICU hydration 1 ml/kg /hr 4 to 8 hours before given in a step-down intervention and for 18 to 24 unit 4 to 8 hours before intervention hours post intervention and for 18 to 24 hours N=58 post intervention N=56

Primary endpoint: Change in SCr and inhospital mortality

Marenzi G et al, N Engl J Med. 2003;349:1333-1340

The Prevention of CIN by Hemofiltration

Marenzi G et al, N Engl J Med. 2003;349:1333-1340

The Prevention of CIN by Hemofiltration

Marenzi G et al, N Engl J Med. 2003;349:1333-1340

The Prevention of CIN by Prophylactic Hemodialysis

Design

- DESIGN: Prospective, openlabeled, randomized trial
- OBJECTIVE: to investigate the role of prophylactic hemodialysis, as compared with isotonic-saline hydration, in preventing CIN in patients with renal failure

Primary endpoint: the change in CrCl between baseline and the 4th day.

Lee PT et al, *JACC* 2007; 50:1015-1020

The Prevention of CIN by Prophylactic Hemodialysis

Change in CrCl between day 0 and 4:

Need in long-term dialysis:

Lee PT et al, *JACC* 2007; 50:1015-1020

Targeted Renal Therapy

Benephit[™] Infusion System (FlowMedica, Inc., Fremont, CA)

- A bifurcated infusion catheter that is easily inserted into both renal arteries
- Allows simultaneous infusion of medication into both arteries
- Allows first-pass metabolism by the kidney
- Smaller doses of medication can be given to patients while higher local concentrations in the kidneys are achieved

Differential Effects Between IV and Targeted Renal Delivery of Fenoldopam

A total of 33 pts who underwent coronary angiography were randomized in a 1:2 ratio to control or fenoldopam (initially IV, then crossed over to IR).

Teirstein PS et al, *Am J Cardiol.* 2006;97:1076-1081.

Benephit System Renal Infusion Therapy (Be-RITe) Multicenter Registry

Design

- DESIGN: Prospective, realworld registry
- OBJECTIVE: to evaluate safety and efficacy of targeted renal therapy in preventing CIN

A total of 366 patients (diabetics 61%, mean CrCl 37.1 ml/min, mean SCr 2.1 mg/dl) enrolled at 16 sites worldwide

- Local delivery of fenoldopam, sodium bicarbonate, alprostadil and nesiritide
- Mean time of bilateral renal arteries access 2 min
- Rates of CIN 9.4% compared with 30.6% expected rates

The ICON Trial: Protocol

Primary Endpoint: Peak increase in the serum creatinine concentration between day 0 (when contrast medium was administered) and day 3

Mehran et al. JACC Int 2009

ICON Trial: Increase of Serum Creatinine from Baseline (Secondary Study End Point)

	loxaglate N=74	lodixanol N=71	р
≥ 0.5 mg/dL	18.2 %	16.2 %	0.82
≥ 1 mg/dL	4.5 %	1.5 %	0.36
≥ 25%	24.2 %	16.2 %	0.29
≥ 25% or ≥ 0.5 mg/dL	24.2 %	16.2 %	0.29

Mehran et al. JACC Int 2009

CARE

Design

- DESIGN: Prospective, randomized, double-blind, parallel-group, multi-center clinical evaluation iopamidol-370 and iodixanol-320
- OBJECTIVE: To compare the incidence of CIN between iopamidol-370 and iodixanol-320
- PRIMARY ENDPOINT: Increase in SCr ≥ 0.5 mg/dL from baseline to 45 to 120 hours after administration

CARE

Solomon, RJ et. al., Circulation 115, 3189 (2007)

Interventional Cardiology

Renal Function-Based Contrast Dosing to Define Safe Limits of Radiographic Contrast Media in Patients Undergoing Percutaneous Coronary Interventions

Hitinder S. Gurm, MD,* Simon R. Dixon, MBCHB,† Dean E. Smith, PHD, MPH,* David Share, MD,* Thomas LaLonde, MD,‡ Adam Greenbaum, MD,§ Mauro Moscucci, MD, MBA, for the BMC2 (Blue Cross Blue Shield of Michigan Cardiovascular Consortium) Registry *Ann Arbor, Royal Oak, and Detroit, Michigan; and Miami, Florida*

MACD = 5 x weight (kg)/baseline SCr Not based on *renal function* CV/CCC Based on renal function

The Incidence of Contrast-Induced Nephropathy and Nephropathy Requiring Dialysis by Deciles of CV/CCC

Gurm, H. S. et al. J Am Coll Cardiol 2011;58:907-914

Copyright ©2011 American College of Cardiology Foundation. Restrictions may apply.

Incidence of CIN and NRD

Gurm, H. S. et al. J Am Coll Cardiol 2011;58:907-914

Copyright ©2011 American College of Cardiology Foundation. Restrictions may apply.

Incidence of CIN and NRD by Categories of CV/CCC in Various Subgroups

Gurm, H. S. et al. J Am Coll Cardiol 2011;58:907-914

Copyright ©2011 American College of Cardiology Foundation. Restrictions may apply.

Incidence of CIN and NRD by Categories of CV/CCC Across Different Categories of Baseline GFR

Copyright ©2011 American College of Cardiology Foundation, Restrictions may apply.

Conclusions (1)

- Chronic renal insufficiency is a frequent co-morbidity in patients undergoing PCI and is one of the strongest predictors of morbidity and mortality post PCI
- CIN is the third most common cause of hospital-acquired ARF and is associated with increased morbidity and mortality, and higher resource utilization

Conclusions (2)

- Several factors predispose patients to CIN and should be assessed prior to angiographic procedures
- Hydration before and after contrast exposure is still the most reliable way to preserve renal function and to prevent CIN
- NAC and sodium bicarbonate provide questionable benefit

Conclusions (3)

- The volume of CM should be as low as possible. CV/CCC <2.0</p>
- Significant blood loss and hypotension should be avoided.
- Drugs that adversely effect renal function should be withheld peri-procedurally.
- Controversy persists regarding the benefit of one specific CM over another for its potential to cause less nephrotoxicity.