Pacemakers and ICDs

John Cogan, MD, FACC, FHRS Arrhythmia Consultants of South Florida

Pacers

Principles And Techniques Of Cardiac Pacing. c. 1970;Page 4. Courtesy of Dr. Paul Zoll

1952 Zoll

1958

Principles And Techniques Of Cardiac Pacing. c. 1970; Page 6.

Principles And Techniques Of Cardiac Pacing. c. 1970;Page 73. Courtesy Of New York Academy Of Sciences

Leads

Unipolar vs. Bipolar

Unipolar

- Larger pacing spikes on EKG
- Small diameter lead body
- Less rigid lead body
- More susceptible to oversensing
- May produce muscle and nerve stimulation

Bipolar

- Larger diameter lead body
- Tend to be stiffer
- Less susceptible to oversensing
- Unipolar programmable
- Less likely to produce muscle and nerve stimulation

Basics

- Pulse generator:
 - Provides energy, and has an advanced timer with circuitry and memory chips
- Leads:
 - Pace and sense

Procedure

- Left or right infraclavicular incision
- Pocket
- Access (axillary, cephalic, subclavian)
- Lead insertion
- Pacer placement
- Closing

Pacemakers

- 92 y/o lady with history of recurrent syncope
- ECG and echo OK

Loop recorder:

7 sec. pause

Indications

- SSS
- The short story:
 NO SYMPTOMS: NO PACEMAKER
 - Symptomatic brady not iatrogenic
 - Chronotropic incompetence
 - Syncope with evidence of SSS
 - Pauses (3 sec) or very slow HR (<40) while awake and symptoms

Indications

- AV Block
 - 3rd degree AVB, or 2nd degree AV block Mobitz II
 - Any 2nd degree AV block with symptoms
 - Mobitz I, proven to be intra or infra hisian with EPS
 - Some neuromuscular diseases (even without symptoms)
 - 2nd degree AV Mobitz I, no symptoms → No pacer

55 y/o with nl EF, SR with LBBB, asymptomatic 2nd degree AV block, looked like Mobitz I.....

GE Medical Systems

Indications

- Syncope with HV >70
- Asymptomatic with HV>100
- Infrahisian block, not physiologic

Long QT

Same as others, plus pts with pause dependent VT

Bifascicular Block

Indications

- Bifascicular or "trifascicular" block
 - Same as regular AV block
 - − No symptoms or AV block → no pacer
- Vasovagal/Neurocardiogenic
 - Not indicated for most patients
- Carotid hypersensitivity syndrome
 - Syncope plus + CSM=Pacer
 - No symptoms, even with + CSM=no pacer
- HCM
 - Same as SSS
 - Medically refractory with high LVOT gradient
 - Not indicated in the absence of gradient even with symptoms

Temporary Pacer

- Refractory symptomatic sinus node dysfunction (Temp if reversible or post MI)
- Complete heart block
- Alternating bundle-branch block
- New bifascicular block in AMI
- Bradycardia-dependent ventricular tachycardia

NBG Code Review

I Chamber Paced	II Chamber Sensed	III Response to Sensing	IV Programmable Functions/Rate Modulation	V Multisite Pacing
V: Ventricle	V: Ventricle	T: Triggered	P: Simple programmable	P: Pace
A: Atrium	A: Atrium	I: Inhibited	M: Multi- programmable	S: Shock
D: Dual (A+V)	D: Dual (A+V)	D: Dual (T+I)	C: Communicating	D: Dual (P+S)
O: None	O: None	O: None	R: Rate modulating	O: None
S: Single (A or V)	S: Single (A or V)		O: None	

Mode Selection Decision Tree

Troubleshooting Sensing or Capture problems Too much, or too little

crosstalk

No capture

myopotentials

Diagnostics

Episode:

Arrhythmia Detail

1273 Serial

Model

Guident

Episodei

Stored EGM

V-EGH

Arrhythmia Trigger Maximum Rate Achieved Arrhythmia Duration Dete: Time: 24-JUL-98 08:37

AFIB

End of Repor

Pacemaker syndrome

• Symptoms:

 syncope or near-syncope, orthostatic dizziness, fatigue, exercise intolerance, weakness, lethargy, chest fullness or pain, cough, uncomfortable pulsations in the neck or abdomen, right upper quadrant pain, and other nonspecific symptoms.

• Cause:

 Loss of AV synchromy, most common in VVI or DDI mode.

Pacemaker syndrome

History of ICD Therapy

1966: Device conception

 1980: First human implant at Johns Hopkins Hospital. To meet criteria, the patients had to have survived two episodes of cardiac arrest not associated with an infarction and VF had to be documented at least once.

First Clinical Model

- 250 g
- Short-lived
- Shock only
- Nonprogrammable
- No data storage
- Committed
- Required thoracotomy and abdominal implant

Implantable Defibrillators (1989-2001)

Device Evolution

 1985
 1991
 1995

Device Features

- Programmable therapy options
 - Energy selection
 - Multiple zones
 - Antitachycardia pacing
- Data storage
- Discrimination of SVT and VT
- Single, dual-chamber or bi-ventricular pacing
- Audible patient alerts
- Longevity up to 8 years:

Shocking Circuit Vectors Example of Dual Coil: AX > B (Active Can + SVC HV Coil > RV HV Coil)

Implantable Cardioverter Defibrillator Trials for Secondary Prevention of SCD

	Mortality						
	STUDY GROUP	Control	ICDs	Rel RR	P Value		
AVID	VF, sustained VT; EF ≤ 40% ICD vs amiodarone Mean EF 35% F/U: 18 mo	24%	15.8%	30%	0.02		
CIDS	VF, symptomatic VT; EF ≤ 35%, CL < 400ms Mean EF 34% F/U: 36 mo	29.6%	25.3%	-30%	0.14		
CASH	Survivors of SCD (VF/VT) propafenone/metoprolol/ amiodarone/ICD Mean EF 45%, F/U: 57 mo	44.4%	36.4%	23%	0.08		
Meta-analysis				28%	0.006		

AVID = Antiarrhythmics vs Implantable Defibrillators. NEJM 1997; 337:1576 (terminated early) CIDS = Canadian ICD study. Circulation 2000;101:1297 CASH = Cardiac Arrest Study of Hamburg. Circulation 2000;102:748

ICD for 1^{ry} Prevention Study Criteria Comparison

Inclusion Criteria	MADIT ¹ 1996 (n = 196)	MUSTT ² 1999 (n =704)	MADIT II ³ 2002 (n =1232)	SCD- HeFT (n =2521)
	\checkmark	\checkmark	\checkmark	
CAD/Post-MI				
	\checkmark	\checkmark	\checkmark	\checkmark
LV Dysfunction	(<u><</u> 35%)	(<u><</u> 40%)	(<u><</u> 30%)	(<u><</u> 35%)
NSVT	✓	✓		
Inducible VT on EPS	✓	✓		
Inducible, non- suppressible VT on EPS	✓			

¹ Moss AJ. *N Engl J Med*. 1996;335:1933-40. ² Buxton AE. *N Engl J Med*. 1999;341:1882-90. ³ Moss AJ. *N Engl J Med*. 2002; 346:877-83.

28 y/o man with recurrent syncope

- NI ECG, some PVCs
- NI Echo
- NI MRI heart
- Recurrent syncope

Time for an ICD?????

Indications for ICD

- Spontaneous or inducible VT/VF
- Sustained VT with structural heart disease
- Unexplained syncope with inducible VT/VF or in very high risk patients
- High risk inherited conditions (Long QT, Brugada)
- LVEF < 35% ischemic or non-ischemic

Contraindications

- Incessant VT or VF
- VT or VF due to a <u>completely</u> reversible cause
- Psychiatric illness potentially aggravated by ICD therapy
- Terminal illness
- Class IV CHF without option of cardiac transplantation (except bi-V)

VT vs. SVT

Sometimes, it's just bad: Lead fracture, noise, oversensing (diaphragmatic myopotentials in this case)

Deep breathing

Anti Tachycardia Pacing

Examples of Success (A) and Failure (B)

Episode duration = 5.3 s

Episode duration = 16.8 s

Bi-V

- Dyssynchrony is an anatomicalmechanical event involving:
 - Abnormal ventricular activation (EF)
 - Decreased ventricular filling
 - Abnormal ventricular wall motion
- Up to 50%-70% of patients with HF have ventricular dyssynchrony

Who Needs CRT?

Classic indication:

- NYHA = III-IV
- QRS duration ≥120 ms
- EF ≤ 35%

New Indication:

• NYHA = I-II

- EF <30%
- LBBB

Bi-V Trials

PATH-CHF

MUSTIC

MIRACLE

Contak CD

Miracle ICD

Companion

Care HF

- These trials show:
 - Better exercise tolerance
 - Better QOL
 - Better NHYA class
 - Improved mortality

Pacer/ICD Complications

- Acute: Bleeding, pneumothorax, lead dislodgement, hematoma, lead malposition, perforation, PE, SCV DVT
- Infection or erosion in 1-2% of cases and requires system removal
- Malfunction of device; lead is the weakest link can fracture or fail
- Inappropriate shocks
- Ventricular pacing might be detrimental
 - MADIT II demonstrated increased incidence of CHF in defibrillator patients
 - DAVID trial demonstrated 3.6% mortality increment with DDD versus backup VVI

Lead fracture

Middle cardiac vein

LV through ASD

Lack of capture post implant

Rare Complications

Twiddler Syndrome

Erosion

Follow up

- Wireless devices
- Routine ICD checks at home
- Interrogator to device without a cable
- Internet/satellite, GSM based interrogation
- No more: "go to the ER for a shock"

Home Monitoring

Early Detection Technology

Early Detection. Anytime. Anywhere. Automatically

Questions?